Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
高瀬 和之; 小瀬 裕男*; 秋本 肇
Proceedings of the 1st International Symposium on Advanced Fluid Information (AFI-2001), p.227 - 232, 2001/10
核融合実験炉ITERの構成要素を約1/1600で模擬した試験装置を使って、冷却材侵入事象(ICE)下における沸騰二相流挙動を定量的に調べた、また、安全性評価解析コードTRAC-PF1を使って試験結果の検証計算を行い、プラズマチャンバー(PC)や真空容器(VV)に侵入した水の流動挙動を3次元的に把握した。本研究により次の成果を得た。(1)サプレッションタンク,リリーフ配管,ドレンタンク等から成るITER圧力抑制システムは圧力上昇の抑制に非常に有効であり、ITER圧力抑制システムの設計は妥当である。(2)圧力の上昇はPCやVVの内壁温度よりも侵入水温度の影響を強く受ける。(3)圧力抑制システムによる圧力上昇の抑制はリリーフ配管の断面積に依存する。(4)PC内に侵入した水の大部分はPCとサプレッションタンクの圧力が均圧するまでPC内に停滞する。その後PCの水はVVに停滞し、最終的にドレンタンクに移動する。(5)水浸入後300秒程度までの時間帯では、PC内の平均熱伝達率は水侵入とともに増大し水侵入終了時に最高値約1300W/mKを示し、その後は低下する。VVの平均熱伝達率は最高でも150W/mK程度である。一方、PC底部に位置するダイバータ部の平均熱伝達率は水侵入終了時から顕著に上昇し300秒時に約1500W/mKを示す。