Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhang, H.*; Umehara, Yutaro*; Yoshida, Hiroyuki; Mori, Shoji*
International Journal of Heat and Mass Transfer, 218, p.124750_1 - 124750_11, 2024/01
Times Cited Count:3 Percentile:60.37(Thermodynamics)Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Wakai, Eiichi; Futakawa, Masatoshi
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 13 Pages, 2022/03
The cross-flow type target was developed as the basic design of mercury target in J-PARC, and the design has been improved to realize the MW-class pulsed spallation neutron source. When the high-power and short-pulsed proton beam is injected into the mercury target, pressure waves are generated in mercury by rapid heat generation. The pressure waves induce the cavitation damages on the target vessel. Two countermeasures were adopted, namely, the injection of microbubbles into mercury and the double walled structure at the beam window. The bubble generator was installed in the target vessel to absorb the volume inflation of mercury and mitigate the pressure waves. Also, the double walled target vessel was designed to suppress the cavitation damage by the large velocity gradient of rapid mercury flow in the narrow channel of double wall. Finally, we could attain 1 MW beam operation with the duration time of 36.5 hours in 2020, and achieved the long term stable operation with 740 kW from April in 2021. This report shows the technical development of the high-power mercury target vessel in view of thermal hydraulics to attain 1 MW operation.
Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi
Materials Science Forum, 1024, p.111 - 120, 2021/03
The mercury target vessel for the at the J-PARC neutron source is severely damaged by the cavitation caused by proton beam-induced pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the vessel. In addition, gas microbubbles were injected into the mercury to suppress the pressure waves. The front end of the vessel was cut out to inspect the effect of the damage mitigation technologies on the interior surface. The results showed that the double-walled target facing the mercury with gas microbubbles operating at 1812 MWh for an average power of 434 kW had equivalent damage to the single-walled target without microbubbles operating 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel was clearly smaller than it was on the wall facing the bubbling mercury
Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi
JPS Conference Proceedings (Internet), 28, p.081004_1 - 081004_6, 2020/02
The beam window of the mercury target vessel in J-PARC is severely damaged by the cavitation. The cavitation damage is a crucial factor to limit lifetime of the target because it increases with the beam power. Therefore, mitigating cavitation damage is an important issue to operate the target stably for long time at 1 MW. At J-PARC, to mitigate the cavitation damage: gas microbubbles are injected into mercury for suppressing pressure waves, and double-walled structure with a narrow channel of 2 mm in width to form high-speed mercury flow (4m/s) has been adopted. After operation, the beam window was cut to inspect the effect of the cavitation damage mitigation on inner wall. We optimized cutting conditions through the cold cutting tests, succeeding in cutting the target No.2 (without damage mitigation technologies) smoothly in 2017, and target No.8 with damage mitigation technologies. In the workshop, progress of cavitation damage observation for the target vessel will be presented.
Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.
Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09
At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.
Kogawa, Hiroyuki; Ishikura, Shuichi*; Sato, Hiroshi; Harada, Masahide; Takatama, Shunichi*; Futakawa, Masatoshi; Haga, Katsuhiro; Hino, Ryutaro; Meigo, Shinichiro; Maekawa, Fujio; et al.
Journal of Nuclear Materials, 343(1-3), p.178 - 183, 2005/08
Times Cited Count:8 Percentile:48.53(Materials Science, Multidisciplinary)A cross-flow type (CFT) mercury target with flow guide blades, which has been developed for JSNS, can suppress the generation of stagnant flow region especially near the beam window where the peak heat density is generated due to spallation reaction. Then, a flat type beam window has been applied to the CFT target from the viewpoint of suppressing dynamic stress caused by a pressure wave, which has been estimated with a mercury model of the linear equation of state. The recent experimental results obtained by using a proton beam incidents to mercury led that a cutoff pressure model in the equation of state of mercury caused a suitable dynamic stress with experimental results. Dynamic stress analyses were carried out with the cutoff pressure model, in which the negative pressure less than 0.15 MPa was not generated. The generated dynamic stress in the flat beam window became much larger than that in a semi-cylindrical type window. However, the generated stress in the semi-cylindrical type beam window was over the allowable stress of SS316L under the peak heat density of 668 W/cc. In order to decrease the dynamic stress in the semi-cylindrical beam window, the incident proton beam was defocused to decrease the peak heat density down to 218 W/cm. As a result, the dynamic stress could be suppressed less than the allowable stress. On the other hand, due to defocus of the proton beam, high heat density was generated on the end of the flow guide blades, which caused high thermal stress exceeding the allowable stress. To decrease the thermal stress, several shapes of the blade ends were studied analytically, which were selected so as not to affect the mercury flow distribution. A simple thin-end blade showed low thermal stress below the allowable stress.
Futakawa, Masatoshi; Naoe, Takashi; Tsai, C.-C.*; Kogawa, Hiroyuki; Ishikura, Shuichi*; Ikeda, Yujiro; Soyama, Hitoshi*; Date, Hidefumi*
Journal of Nuclear Materials, 343(1-3), p.70 - 80, 2005/08
Times Cited Count:58 Percentile:95.44(Materials Science, Multidisciplinary)no abstracts in English
Ishikura, Shuichi*; Shiga, Akio*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro
JAERI-Tech 2005-026, 65 Pages, 2005/03
Failure probability analysis was carried out to estimate the lifetime of the mercury target which will be installed into the JSNS (Japan spallation neutron source) in J-PARC (Japan Proton Accelerator Research Complex). The lifetime was estimated as taking loading condition and materials degradation into account. Considered loads imposed on the target vessel were the static stresses due to thermal expansion and static pre-pressure on He-gas and mercury and the dynamic stresses due to the thermally shocked pressure waves generated repeatedly at 25 Hz. Materials used in target vessel will be degraded by the fatigue, neutron and proton irradiation, mercury immersion and pitting damages, etc. The imposed stresses were evaluated through static and dynamic structural analyses. The material-degradations were deduced based on published experimental data. As results, it was quantitatively confirmed that the failure probability for the lifetime expected in the design is very much lower, 10 in the safety hull, meaning that it will be hardly failed during the design lifetime. On the other hand, the beam window of mercury vessel suffered with high-pressure waves exhibits the failure probability of 12%. It was concluded, therefore, that the leaked mercury from the failed area at the beam window is adequately kept in the space between the safety hull and the mercury vessel to detect mercury-leakage sensors.
Futakawa, Masatoshi; Naoe, Takashi*; Kogawa, Hiroyuki; Ikeda, Yujiro
Journal of Nuclear Science and Technology, 41(11), p.1059 - 1064, 2004/11
Times Cited Count:12 Percentile:60.98(Nuclear Science & Technology)High power spallation targets for neutron sources are developing in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic Impact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between damage and acoustic vibration. It was confirmed that the acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity.
Ishikura, Shuichi*; Futakawa, Masatoshi; Kogawa, Hiroyuki; Meigo, Shinichiro; Maekawa, Fujio; Harada, Masahide; Sato, Hiroshi; Haga, Katsuhiro; Ikeda, Yujiro
JAERI-Tech 2004-028, 123 Pages, 2004/03
This report describes the structural design concept applied to the mercury target vessel used for the spallation neutron source installed in the material and life science experiment facility of J-PARC (Japan Proton Accelerator Complex), and the results evaluated on the basis of the concept. The features of the design concept are as follows: (1) The target vessel design is followed to "Law concerning Prevention from Radiation Hazards due to Radio-Isotopes". That is because (i) there is not the possibility in the target of the RIA (Reactivity Initiated Accident) generally considered in the nuclear power reactors, and (ii) the target vessel is not a permanent structure. (2) Therefore, the Class 1 Vessel of the JIS B-8270 [design code for pressure vessel] that is equivalent to a standard for nuclear power structural design is applicable as a design code for the target to sufficiently keep the safety of target system. The stresses for the design were evaluated using the linear elastic analysis based on the infinitesimal strain theory in order to confirm the safe and rational design.
Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro; Saito, Masakatsu*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(1), p.59 - 66, 2004/03
The development of a MW-class spallation neutron source facility is being carried out under the Japan Proton Accelerator Research Complex (J-PARC) Project promoted by JAERI and KEK. A mercury target working as the spallation neutron source will be subjected to pressure waves generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will impose dynamic stress on the vessel and deform the vessel, which would cause cavitation in mercury. To evaluate the effect of mercury micro jets, driven by cavitation bubble collapse, on the micro-pit formation, analyses on mercury sphere collision were carried out: single bubble dynamics and collision behavior on interface between liquid and solid, which take the nonlinearity due to shock wave in mercury and the strain rate dependency of yield stress in solid metal into account. Analytical results give a good explanation to understand relationship between the micro-pit formation and material properties: the pit size could decrease with increasing the yield strength of materials.
Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro
JAERI-Tech 2003-093, 55 Pages, 2004/01
To estimate the structural integrity of the heavy liquid-metal (Hg) target used in a MW-class neutron scattering facility, static and dynamic stress behaviors due to the incident of a 1MW-pulsed proton beam were analyzed. In the analyses, two-type target containers with semi-cylindrical type and flat type window were used as analytical models of the structural analysis codes LS-DYNA. As a result, it is confirmed that the stress generated by dynamic thermal shock becomes the largest at the center of window, and the flat type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It was confirmed to erosion damage the target container by mercury's becoming negative pressure in the window and generating the cavitation by the experiment. Therefore, it has been understood that the point top of the window was in the compression stress field by the steady state thermal stress because of the evaluation from destroying the dynamic viewpoint for the crack in the generated pit and the pit point, and the crack did not progress.
Shibamoto, Yasuteru; Iguchi, Tadashi; Nakamura, Hideo; Kukita, Yutaka*
Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 11 Pages, 2003/04
The pressure effect on the onset of flow instability in a vertical upflow through a boiling channel is studied both analytically and experimentally. The analytical model is based on the Wallis-Heasley model for linear analysis of one-dimensional homogeneous two-phase flow in thermal equilibrium. The dead-time elements commonly used to represent the time lag in the responses of variables to the inlet velocity perturbation is replaced by first-order lag elements to allow the system characteristic equation to be solved analytically. This approach, although approximate, makes it much easier to identify the main contributor to the instability because the individual components are represented by separate terms in the characteristic equation. The predictions are in reasonable agreement with the data when the system pressure effect on the irreversible pressure loss in the two-phase region is appropriately considered based on calibration experiments.
Kogawa, Hiroyuki; Ishikura, Shuichi*; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro
Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 7 Pages, 2003/04
The developments of a MW-class spallation neutron source facility are being carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. A mercury target will be used as a neutron source in the facility. The mercury target vessel made of 316LSS will be subjected to pressure wave generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will make huge stress on the vessel and will deform the vessel, which would cause cavitation in mercury. To estimate the structural integrity of the mercury target vessel, especially beam window, dynamic stress behaviors due to 1MW-pulsed proton beam injection were analyzed by using FEM code. In the analyses, two types of the target vessels with semi-cylindrical and flat type windows were used as analytical models. As the results, it has been understood that the stress generated in the beam window by the pressure wave could be treated as the secondary stress. Also it was confirmed that the flat type window would be more advantageous from the structural viewpoint than the semi-cylindrical type window.
Futakawa, Masatoshi; Kogawa, Hiroyuki; Tsai, C.-C.*; Ishikura, Shuichi*; Ikeda, Yujiro
JAERI-Research 2003-005, 70 Pages, 2003/03
A liquid-mercury target system for the MW-scale target is being developed in the world. The moment the proton beams bombard the target, stress waves will be imposed on the beam window and pressure waves will be generated in the mercury by the thermally shocked heat deposition. Provided that the negative pressure generates through its propagation in the mercury target and causes cavitation in the mercury, there is the possibility for the cavitation bubbles collapse to form pits on the interface between the mercury and the target vessel wall. In order to estimate the cavitation erosion damage due to pitting, two types of off-line tests were performed: Split Hopkinson Pressure Bar (SHPB), and Magnetic IMpact Testing Machine (MIMTM). The data on the pitting damage at the high cycle impacts up to 10 million were given by the MIMTM. As a result, it is confirmed that the mean depth erosion is predictable using a homologous line in the steady state with mass loss independently of testing machines and the incubation period is very dependent on materials and imposed pressures.
Futakawa, Masatoshi; Kogawa, Hiroyuki; Hino, Ryutaro; Date, Hidefumi*; Takeishi, Hiromasa*
International Journal of Impact Engineering, 28(2), p.123 - 135, 2003/02
JAERI is carrying out research & development to construct the a of spallation neutron source facility, which may bring us innovative science fields. A high power proton beam will be injected into a liquid mercury target to produce neutrons. The mercury vessel will consequently be subjected to the pressure waves generated by rapid thermal expansion. The pressure waves will propagate from the liquid mercury into the vessel solid metal, and back again. The pressure waves may induce erosion at the interface between the solid metal vessel and the liquid mercury under certain loading conditions, e.g. impact. In order to investigate the impact erosion damage due to the pressure wave, we have carried out impact experiments using a modified conventional split Hopkinson pressure bar apparatus on mercury filling a small chamber. Surface degradation in the form of many pits was observed and the ranking order of damage was found to be A6061316SS@Inconel600Maraging steel, which is the same as that of hardness.
Ishikura, Shuichi*; Kogawa, Hiroyuki; Futakawa, Masatoshi; Hino, Ryutaro; Date, Hidefumi*
Koon Gakkai-Shi, 28(6), p.329 - 335, 2002/11
The developments of the neutron scattering facilities are carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (Hg) target used as a spallation neutron source in a MW-class neutron scattering facility, dynamic stress behavior due to the incident of a 1MW-pulsed proton beam were analyzed by using FEM code. Two-type target containers with semi-cylindrical type and flat-plate type window were used as models for analyses. As a result, it is confirmed that the stress (pressure wave) generated by dynamic thermal shock becomes the largest at the center of window, and the flat-plate type window is more advantageous from the structural viewpoint than the semi-cylindrical type window. It has been understood that the stress generated in the window by the pressure wave can be treated as the secondary stress.
Koshizuka, Seiichi*; Ikeda, Hirokazu*; Liu, J.*; Oka, Yoshiaki*
JAERI-Tech 2002-013, 60 Pages, 2002/03
no abstracts in English
Kikuchi, Kenji; Nakashima, Hiroshi; Ishikura, Shuichi*; Futakawa, Masatoshi; Hino, Ryutaro
Journal of the Physical Society of Japan, 37(2), p.113 - 119, 2000/02
no abstracts in English
Kikuchi, Kenji; Futakawa, Masatoshi; Ishikura, Shuichi*; Kogawa, Hiroyuki
Nihon Kikai Gakkai Zairyo Rikigaku Bumon Koenkai (M&M'99) Koen Rombunshu, p.467 - 468, 1999/10
no abstracts in English