Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 464

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of brittle crack arrest toughness for highly-irradiated reactor pressure vessel steels

Iwata, Keiko; Hata, Kuniki; Tobita, Toru; Hirota, Takatoshi*; Takamizawa, Hisashi; Chimi, Yasuhiro; Nishiyama, Yutaka

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 7 Pages, 2021/07

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-09; 1.9% pressure vessel top small break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2021-006, 61 Pages, 2021/04

JAEA-Data-Code-2021-006.pdf:2.78MB

An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.

Journal Articles

Application of probabilistic fracture mechanics to reactor pressure vessel using PASCAL4 code

Lu, K.; Katsuyama, Jinya; Li, Y.; Yoshimura, Shinobu*

Journal of Pressure Vessel Technology, 143(2), p.021505_1 - 021505_8, 2021/04

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

Journal Articles

Nonmagnetic-magnetic transition and magnetically ordered structure in SmS

Yoshida, Shogo*; Koyama, Takehide*; Yamada, Haruhiko*; Nakai, Yusuke*; Ueda, Koichi*; Mito, Takeshi*; Kitagawa, Kentaro*; Haga, Yoshinori

Physical Review B, 103(15), p.155153_1 - 155153_5, 2021/04

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

Journal Articles

Effect of gas microbubble injection and narrow channel structure on cavitation damage in mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

Materials Science Forum, 1024, p.111 - 120, 2021/03

The mercury target vessel for the at the J-PARC neutron source is severely damaged by the cavitation caused by proton beam-induced pressure waves in mercury. To mitigate the cavitation damage, we adopted a double-walled structure with a narrow channel for the mercury at the beam window of the vessel. In addition, gas microbubbles were injected into the mercury to suppress the pressure waves. The front end of the vessel was cut out to inspect the effect of the damage mitigation technologies on the interior surface. The results showed that the double-walled target facing the mercury with gas microbubbles operating at 1812 MWh for an average power of 434 kW had equivalent damage to the single-walled target without microbubbles operating 1048 MWh for average power of 181 kW. The erosion depth due to cavitation in the narrow channel was clearly smaller than it was on the wall facing the bubbling mercury

Journal Articles

Pressure-dependent structure of methanol-water mixtures up to 1.2 GPa; Neutron diffraction experiments and molecular dynamics simulations

Temleitner, L.*; Hattori, Takanori; Abe, Jun*; Nakajima, Yoichi*; Pusztai, L.*

Molecules (Internet), 26(5), p.1218_1 - 1218_12, 2021/03

 Times Cited Count:0 Percentile:0(Biochemistry & Molecular Biology)

Total structure factors of per-deuterated methanol and heavy water, CD$$_{3}$$OD and D$$_{2}$$O, have been determined across the entire composition range at pressures of up to 1.2 GPa, by neutron diffraction. Largest variations due to increasing pressure were observed below $$Q=$$ 5 $AA$^{-1}$$, mostly as shifts of the first and second maxima. Molecular dynamics computer simulations been conducted at the experimental pressures to interpret neutron diffraction results. The peak shifts mentioned above could be qualitatively reproduced by simulations. In order to reveal the influence of changing pressure on the local intermolecular structure, simulated structures have been analyzed in terms of hydrogen bond related partial radial distribution functions and size distributions of hydrogen bonded cyclic entities. Distinct differences between pressure dependent structures of water-rich and methanol-rich composition regions have been revealed.

JAEA Reports

Data report of ROSA/LSTF experiment SB-SL-01; Main steam line break accident

Takeda, Takeshi

JAEA-Data/Code 2020-019, 58 Pages, 2021/01

JAEA-Data-Code-2020-019.pdf:3.85MB

An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.

Journal Articles

Effects of pressure and heat loss on the unstable motion of cellular-flame fronts caused by intrinsic instability in hydrogen-air lean premixed flames

Kadowaki, Satoshi; Thwe, T. A.; Furuyama, Taisei*; Kawata, Kazumasa*; Katsumi, Toshiyuki; Kobayashi, Hideaki*

Journal of Thermal Science and Technology (Internet), 16(2), p.20-00491_1 - 20-00491_12, 2021/00

Effects of pressure and heat loss on the unstable motion of cellular-flame fronts in hydrogen-air lean premixed flames were numerically investigated. The reaction mechanism for hydrogen-oxygen combustion was modeled with seventeen reversible reactions of eight reactive species and a diluent. Two-dimensional unsteady reactive flow was treated, and the compressibility, viscosity, heat conduction, molecular diffusion and heat loss were taken into account. As the pressure became higher, the maximum growth rate increased and the unstable range widened. These were due mainly to the decrease of flame thickness. The burning velocity of a cellular flame normalized by that of a planar flame increased as the pressure became higher and the heat loss became larger. This indicated that the pressure and heat loss affected strongly the unstable motion of cellular-flame fronts. In addition, the fractal dimension became larger, which denoted that the flame shape became more complicated.

Journal Articles

Plasticity correction on stress intensity factor evaluation for underclad cracks in reactor pressure vessels

Lu, K.; Katsuyama, Jinya; Li, Y.

Journal of Pressure Vessel Technology, 142(5), p.051501_1 - 051501_10, 2020/10

 Times Cited Count:0 Percentile:0(Engineering, Mechanical)

Journal Articles

Extension of PASCAL4 code for probabilistic fracture mechanics analysis of reactor pressure vessel in boiling water reactor

Lu, K.; Katsuyama, Jinya; Li, Y.

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 10 Pages, 2020/08

Journal Articles

Recent verification activities on probabilistic fracture mechanics analysis code PASCAL4 for reactor pressure vessel

Lu, K.; Katsuyama, Jinya; Li, Y.; Miyamoto, Yuhei*; Hirota, Takatoshi*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*

Mechanical Engineering Journal (Internet), 7(3), p.19-00573_1 - 19-00573_14, 2020/06

Journal Articles

Neutron diffraction study on the deuterium composition of nickel deuteride at high temperatures and high pressures

Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*

Physica B; Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06

 Times Cited Count:1 Percentile:23.44(Physics, Condensed Matter)

The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) ${AA $^{3}$/D}$ atom was obtained. This value is in agreement with the values of 2.14-2.2 ${AA $^{3}$/D}$ atom previously reported for Ni and Ni$$_{0.8}$$ Fe$$_{0.2}$$ alloy.

Journal Articles

Improvements on evaluation functions of a probabilistic fracture mechanics analysis code for reactor pressure vessels

Lu, K.; Katsuyama, Jinya; Li, Y.

Journal of Pressure Vessel Technology, 142(2), p.021208_1 - 021208_11, 2020/04

 Times Cited Count:3 Percentile:65.8(Engineering, Mechanical)

Journal Articles

Guideline on probabilistic fracture mechanics analysis for Japanese reactor pressure vessels

Katsuyama, Jinya; Osakabe, Kazuya*; Uno, Shumpei*; Li, Y.; Yoshimura, Shinobu*

Journal of Pressure Vessel Technology, 142(2), p.021205_1 - 021205_10, 2020/04

 Times Cited Count:1 Percentile:31.67(Engineering, Mechanical)

no abstracts in English

Journal Articles

Mitigation of cavitation damage in J-PARC mercury target vessel

Naoe, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Wakui, Takashi; Wakai, Eiichi; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 28, p.081004_1 - 081004_6, 2020/02

The beam window of the mercury target vessel in J-PARC is severely damaged by the cavitation. The cavitation damage is a crucial factor to limit lifetime of the target because it increases with the beam power. Therefore, mitigating cavitation damage is an important issue to operate the target stably for long time at 1 MW. At J-PARC, to mitigate the cavitation damage: gas microbubbles are injected into mercury for suppressing pressure waves, and double-walled structure with a narrow channel of 2 mm in width to form high-speed mercury flow ($$sim$$4m/s) has been adopted. After operation, the beam window was cut to inspect the effect of the cavitation damage mitigation on inner wall. We optimized cutting conditions through the cold cutting tests, succeeding in cutting the target No.2 (without damage mitigation technologies) smoothly in 2017, and target No.8 with damage mitigation technologies. In the workshop, progress of cavitation damage observation for the target vessel will be presented.

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

Journal Articles

Structure change of monoclinic ZrO$$_{2}$$ baddeleyite involving softenings of bulk modulus and atom vibrations

Fukui, Hiroshi*; Fujimoto, Manato*; Akahama, Yuichi*; Sano, Asami; Hattori, Takanori

Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 75(4), p.742 - 749, 2019/08

 Times Cited Count:2 Percentile:38.26(Chemistry, Multidisciplinary)

Monoclinic ZrO$$_{2}$$ baddeleyite exhibits anomalous softenings of bulk modulus and atom vibrations with compression. We have investigated the pressure evolution of the structure by neutron powder diffraction combined with ab-initio calculations. The present results showed that the anomalous pressure response of the bulk modulus is related not to the change in the bonding characters but to the deformation of an oxygen sublattice, especially one of layers made of oxygens in the crystallographic $$a$$* plane. The layer consists of two parallelograms; one is rotating with little distortion and the other is being distorted with increasing pressure. This deformation of this layer makes one of Zr-O distances long, resulting in the softening of some atom vibrational modes.

Journal Articles

Application of probabilistic fracture mechanics methodology for Japanese reactor pressure vessels using PASCAL4

Lu, K.; Katsuyama, Jinya; Li, Y.; Yoshimura, Shinobu*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 9 Pages, 2019/07

Journal Articles

Effect of coolant water temperature of ECCS on failure probability of RPV

Katsuyama, Jinya; Masaki, Koichi; Lu, K.; Watanabe, Tadashi*; Li, Y.

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07

For reactor pressure vessel (RPV) of pressurized water reactor, temperature of coolant water in emergency core cooling system (ECCS) may have influence on the structural integrity of RPV during pressurized thermal shock (PTS) events. Focusing on a mitigation measure to raise the coolant water temperature of ECCS for aged RPVs in order to reduce the effect of thermal shock due to PTS events, we performed thermal hydraulic analyses and probabilistic fracture mechanics analyses by using RELAP5 and PASCAL4, respectively. From the analysis results, it was shown that the failure probability of RPV was dramatically reduced when the coolant temperature in accumulator as well as high and low pressure injection systems (HPI/LPI) was raised, although raising the coolant temperature of HPI/LPI only did not cause reduction in the failure probability.

Journal Articles

Coupled THMC analysis for predicting hydro-mechanical evolution in siliceous mudstone

Ogata, Sho*; Yasuhara, Hideaki*; Aoyagi, Kazuhei; Kishida, Kiyoshi*

Proceedings of 53rd US Rock Mechanics/Geomechanics Symposium (USB Flash Drive), 6 Pages, 2019/06

464 (Records 1-20 displayed on this page)