Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Initialising ...

Lu, K.; Katsuyama, Jinya; Li, Y.; Miyamoto, Yuhei*; Hirota, Takatoshi*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*

Mechanical Engineering Journal (Internet), 7(3), p.19-00573_1 - 19-00573_14, 2020/06

Lu, K.; Katsuyama, Jinya; Li, Y.

Journal of Pressure Vessel Technology, 142(2), p.021208_1 - 021208_11, 2020/04

Times Cited Count：0 Percentile：100(Engineering, Mechanical)Katsuyama, Jinya; Osakabe, Kazuya*; Uno, Shumpei*; Li, Y.; Yoshimura, Shinobu*

Journal of Pressure Vessel Technology, 142(2), p.021205_1 - 021205_10, 2020/04

Times Cited Count：0 Percentile：100(Engineering, Mechanical)no abstracts in English

Lu, K.; Katsuyama, Jinya; Li, Y.; Yoshimura, Shinobu*

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 9 Pages, 2019/07

Katsuyama, Jinya; Masaki, Koichi; Lu, K.; Watanabe, Tadashi*; Li, Y.

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07

For reactor pressure vessel (RPV) of pressurized water reactor, temperature of coolant water in emergency core cooling system (ECCS) may have influence on the structural integrity of RPV during pressurized thermal shock (PTS) events. Focusing on a mitigation measure to raise the coolant water temperature of ECCS for aged RPVs in order to reduce the effect of thermal shock due to PTS events, we performed thermal hydraulic analyses and probabilistic fracture mechanics analyses by using RELAP5 and PASCAL4, respectively. From the analysis results, it was shown that the failure probability of RPV was dramatically reduced when the coolant temperature in accumulator as well as high and low pressure injection systems (HPI/LPI) was raised, although raising the coolant temperature of HPI/LPI only did not cause reduction in the failure probability.

Lu, K.; Katsuyama, Jinya; Li, Y.; Miyamoto, Yuhei*; Hirota, Takatoshi*; Itabashi, Yu*; Nagai, Masaki*; Suzuki, Masahide*; Kanto, Yasuhiro*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

Lu, K.; Masaki, Koichi; Katsuyama, Jinya; Li, Y.

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 8 Pages, 2018/07

Lu, K.; Masaki, Koichi; Katsuyama, Jinya; Li, Y.; Uno, Shumpei*

Proceedings of 2018 ASME Pressure Vessels and Piping Conference (PVP 2018), 10 Pages, 2018/07

Lu, K.; Mano, Akihiro; Katsuyama, Jinya; Li, Y.; Iwamatsu, Fuminori*

Journal of Pressure Vessel Technology, 140(3), p.031201_1 - 031201_11, 2018/06

Times Cited Count：5 Percentile：37.13(Engineering, Mechanical)Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 12 Pages, 2017/11

As a rational inspection methodology, risk informed in-service inspection (RI-ISI) has been widely utilized in in-service inspections of nuclear power plants (NPPs) in several countries. In some of NPPs, an RI-ISI methodology developed by Westinghouse Owners Group (WOG) was applied. As a part of RI-ISI process, extent of examination for important piping segments are determined through the comparisons of leak frequencies with its target value based on the industrial piping leak experiences. The leak frequencies for segments are used as a numerical factor for planning examination based on WOG methodology, and can be evaluated through analyses on the basis of probabilistic fracture mechanics (PFM). In Japan Atomic Energy Agency (JAEA), we have developed a PFM analysis code PASCAL-SP for evaluating leak and rupture probabilities or frequencies of welds in piping of light water reactors taking crack initiation and propagation due to aging degradation mechanisms such as fatigue into consideration. Also, evaluation models of probability of crack detection by non-destructive examination considering the crack type, crack depth and performance of examination team is incorporated in PASCAL-SP. In this study, we investigated the applicability of PASCAL-SP into planning of examination considering the effects of repair methodology, performance of inspection team, and examination time. On the basis of analysis results, it was found that examination plans can be reasonably determined by using PASCAL-SP under several conditions, and it was concluded that the PFM is very effective tools in RI-ISI.

Lu, K.; Miyamoto, Yuhei*; Mano, Akihiro; Katsuyama, Jinya; Li, Y.

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 9 Pages, 2017/11

Nowadays, probabilistic fracture mechanics (PFM) has been utilized in several countries as a rational method for structural integrity assessment of important structural components such as reactor pressure vessels (RPVs). In PFM analyses, potential flaws in target components are used to evaluate the failure probability or frequency. Therefore, flaw distributions (i.e., flaw depth and density distributions) in an RPV shall be rationally set as one of the most important influential factors, which are developed during the manufacturing process such as welding. Recently, a Bayesian updating methodology was applied to reflect the inspection results into flaw distributions, and the likelihood functions applicable to the case when flaws are detected in inspections were proposed. However, there may be no flaw indication as the inspection results of some RPVs. The flaw distributions in this situation are important while the corresponding likelihood functions have not been proposed. Therefore, this study proposed likelihood functions to be applicable for both case when flaws are detected and when there is no flaw indication as the inspection results. Based on the proposed likelihood functions, several application examples were given in which flaw distributions were estimated by reflecting the inspection results through Bayesian update. The results indicate that the proposed likelihood functions are useful for estimating the flaw distribution for the case when there is no flaw indication as the inspection results.

Arai, Kensaku*; Katsuyama, Jinya; Li, Y.

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 8 Pages, 2017/11

Probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed to assess structural integrity of aged reactor pressure vessels (RPVs) of light water nuclear power plants by Japan Atomic Energy Agency (JAEA). PASCAL is able to obtain failure frequency such as through-wall cracking frequency (TWCF) of RPVs under several transients including pressurized thermal shock (PTS) event. On the other hand, FAVOR was developed to perform almost the same analysis by Oak Ridge National Laboratory (ORNL) under United States Nuclear Regulatory Commission (USNRC) funding and has been utilized in the US nuclear regulation. To improve the reliability of PFM analysis results of PASCAL, benchmark analyses between PASCAL and FAVOR were performed. This paper provides results of the benchmark analyses using analysis conditions and parameters of the US 3-loop pressurized water reactor (PWR) nuclear power plant. Furthermore, sensitivity analyses relating to differences of analysis models (ex. Embrittlement correlation model) between Japan and the US were also conducted.

Lu, K.; Katsuyama, Jinya; Uno, Shumpei; Li, Y.

Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 8 Pages, 2017/07

Katsuyama, Jinya; Osakabe, Kazuya*; Uno, Shumpei; Li, Y.; Yoshimura, Shinobu*

Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 9 Pages, 2017/07

A structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) is a rational methodology in evaluating failure frequency of reactor pressure vessels (RPVs) by considering the probabilistic distributions of various influence factors related to the aged degradation. We have developed a PFM analysis code PASCAL to evaluate the failure frequency of RPVs considering the neutron irradiation embrittlement and pressurized thermal shock (PTS) events. We have also developed a guideline on the structural integrity assessment of RPVs based on PFM to improve the applicability of PFM in Japan and to be able to perform the PFM analyses and evaluate through-wall cracking frequency of RPVs. The technical basis for PFM analysis is provided and the latest knowledge is included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and Japanese database related to PTS evaluation are presented.

Sugino, Hideharu*; Ito, Hiroto*; Onizawa, Kunio; Suzuki, Masahide

Nippon Genshiryoku Gakkai Wabun Rombunshi, 4(4), p.233 - 241, 2005/12

The purpose of this research is to establish the reliability evaluation method of aged nuclear power components for seismic events from a viewpoint of long-term use of the existing light water reactor nuclear power plants. For this purpose, we developed a piping failure probability evaluation code "PASCAL-SC" based on probabilistic fracture mechanics, and a probabilistic seismic hazard evaluation code "SHEAT-FM" for calculating the seismic occurrence probability of a plant site, paying attention to aging such as fatigue crack progress by the stress corrosion cracking and seismic load in primary coolant piping system. We proposed the reliability evaluation method of aged piping for seismic events by combination of these codes. Using this method, we evaluated the reliability of a weld line in the PLR(Primary Loop Recirculation system) piping of the BWR model plant for seismic events.

Onizawa, Kunio; Shibata, Katsuyuki*; Suzuki, Masahide

Proceedings of 2005 ASME/JSME Pressure Vessels and Piping Division Conference (PVP 2005), 12 Pages, 2005/07

Under a transient loading like pressurized thermal shock (PTS), the stress discontinuity near the interface between cladding and base metal of a reactor pressure vessel (RPV) is caused by the difference in their thermal expansion factors. So the stress intensity factor (SIF) of a surface crack which the deepest point exceeds the interface should be calculated by taking account of the stress discontinuity. Many SIF calculations are performed in Monte Carlo simulation of the probabilistic fracture mechanics (PFM) analysis. To avoid the time consuming process from the SIF calculation in the PFM analysis, the non-dimensional SIF coefficients corresponding to the stress distributions in the cladding and base metal were developed. The non-dimensional SIF coefficients database were obtained from 3D FEM analyses. The SIF value at the surface was determined by linear extrapolation of SIF value near the surface. Using the SIF coefficients database, the SIF values at both surface and deepest points of a surface crack can be evaluated precisely and in a reasonable time.

Shibata, Katsuyuki; Onizawa, Kunio; Li, Y.*; Kato, Daisuke*

International Journal of Pressure Vessels and Piping, 81(9), p.749 - 756, 2004/09

Times Cited Count：5 Percentile：63.05(Engineering, Multidisciplinary)The paper describes the procedure to evaluate the ductile crack extension, where an increase in fracture resistance by a ductile crack extension is considered. Two standard -resistance curves are prepared for applying the elasto-plastic fracture criterion. Case studies concerning the effect of elasto-plastic fracture criterion were carried out using a severe PTS transient. The introduction of the elasto-plastic fracture criterion significantly contributes to remove the over-conservatism in applying the linear elastic fracture criterion. It was also found that the algorithm of the re-evaluation of crack tip characterization also has a significant effect on the failure probability.

Onizawa, Kunio; Shibata, Katsuyuki; Kato, Daisuke*; Li, Y.*

JSME International Journal, Series A, 47(3), p.486 - 493, 2004/07

The probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed in JAERI. This code can evaluate the conditional probabilities of crack initiation and fracture of a reactor pressure vessel (RPV) under transient conditions such as pressurized thermal shock (PTS). Based on the temperature and stress distributions in the vessel wall for four PTS sequences in a typical 3-loop PWR, parametric PFM analyses are performed using PASCAL on the variables such as pre-service inspection model, crack geometry, fracture toughness curve and irradiation embrittlement prediction equation. The results showed that the good perfomance inspection model had a significant effect on the fracture probability and reduced it by more than 3 orders of magnitude. The fracture probability calculated by the fracture toughness estimation method in Japan was about 2 orders of magnitude lower than that by the USA method. It was found that the treatment of a semi-elliptical crack in PASCAL reduced the conservatism in a conventional method that it is transformed into an infinite length crack.

Onizawa, Kunio; Shibata, Katsuyuki; Suzuki, Masahide; Kato, Daisuke*; Li, Y.*

RPV Integrity and Fracture Mechanics (PVP-Vol.481), p.11 - 17, 2004/07

At JAERI, the prpbabilistic fracture mechanics analysis code PASCAL has been developed. Using the PASCAL, the treatment methods of an embedded crack and the fracture toughness evaluation methods were studied on the probability of crack initiation and fracture of a RPV. For calculating the stress intensity factor (SIF) of an embedded crack, the ASME and CRIEPI procedures were introduced into PASCAL. Under a severe pressurized thermal shock condition, the crack growth analysis models with different SIF calculation points and crack growth directions are compared. The results showed that the crack tip at the inner side was most important to the fracture probability. The conditional fracture probability for an embedded crack when the same crack size distribution is assumed is approximately one order of magnitude lower than that of a surface crack. Fracture toughness curves based on Weibull distribution were incorporated into PASCAL. The comparison between these new curves and the current curves showed little effect on the conditional fracture probability of a RPV.

Shibata, Katsuyuki; Onizawa, Kunio; Li, Y.*; Kanto, Yasuhiro*; Yoshimura, Shinobu*

Pressure Vessel and Piping Codes and Standards (PVP-Vol.480), p.235 - 242, 2004/00

A screening standard of small flaws that have no significant influence on the structural integrity is prescribed in ASME Code Sec.XI. From the viewpoint of probabilistic methodology, there are some concerns that weather or not the failure probability is uniform for flaws with various aspect ratios and failure frequencies are small enough. Moreover, acceptable flaws may be determined more rationally based the failure probability. A study was performed on the failure probability of RPVs with a surface flaw specified in Sec.XI using the PFM code PASCAL. A PTS transient of NRC/EPRI Benchmark Study was used. Analysis results showed that the conditional failure probability of a RPV with an initial flaw of acceptable depth depended on the aspect ratio. For a circular flaw, the failure probability is high due to the increase in crack initiation at the surface point. The maximum difference in failure probability reaches one order of magnitude. A case study for determining the acceptable flaws based on failure probability was also carried out.