Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 65

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

In-situ measurement of radiation driven back-conversion from para to ortho liquid hydrogen state in cold moderators at J-PARC

Teshigawara, Makoto; Lee, Y.*; Tatsumoto, Hideki*; Hartl, M.*; Aso, Tomokazu; Iverson, E. B.*; Ariyoshi, Gen; Ikeda, Yujiro*; Hasegawa, Takumi*

Nuclear Instruments and Methods in Physics Research B, 557, p.165534_1 - 165534_10, 2024/12

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

At Japanese Spallation Neutron Source in J-PARC, the para-hydrogen fraction was measured by using Raman spectroscopy in-situ for an integrated beam power of 9.4 MW$$cdot$$h at 1 MW operation, to evaluate the functionality of the ferric oxyhydroxide catalyst. This result showed that full functionality of the catalyst was retained up to the 1 MW operation. We attempted to study the effect of neutron scattering driven para to ortho-hydrogen back-conversion rate in the absence of the catalyst effect with a bypass line without catalyst. The measured increase of ortho-hydrogen fraction was 0.44% for an integrated beam power of 2.4 MW$$cdot$$h at 500 kW operation, however, which was considered to be due to not only to neutron collisions in cold moderators but also to the high ortho-hydrogen fraction of initially static liquid hydrogen in the bypass line and passive exudation of quasi-static hydrogen in the catalyst vessel to the main loop.

Journal Articles

Design and beam dynamics studies of a chopper for the JAEA-ADS LEBT

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.205 - 209, 2024/10

The Japan Atomic Energy Agency (JAEA) designs a 30-MW CW proton linear accelerator (linac) as a key component for the accelerator-driven subcritical system (ADS) project, aimed at nuclear waste management. The low energy beam transport (LEBT) in JAEA-ADS uses charge neutralization to minimize space-charge effects, which are the primary cause of beam loss in high-power accelerators. During commissioning and power ramp-up, precise control of the duty cycle is required for safety and machine protection; thus, a chopper system will be installed to manage the beam power. The chopper is located at the LEBT, to facilitate the disposal of the excess beam power, but its operation will affect the charge neutralization producing beam transients that could lead to beam loss. To shed light on this, we created a beam optics model for the chopper using an analytic approach to determine the required characteristics like voltage and dimensions, which was confirmed through TraceWin simulations. Subsequently, we analyzed the chopper's impact on space-charge compensation to evaluate the beam transients in the LEBT. This study reports the design of the chopper and its effects on beam performance for the JAEA-ADS LEBT.

Journal Articles

Beam transient studies for the JAEA-ADS LEBT

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.488 - 491, 2024/10

The Japan Atomic Energy Agency (JAEA) is designing a 30-MW CW proton linear accelerator (linac) for nuclear waste transmutation. Space-charge is the primary challenge in achieving low losses and high beam quality for high-power accelerators, especially at low energy levels where space-charge forces are greater. To counteract the space-charge effects, the low-energy beam transport (LEBT) uses a magnetostatic design to enable the neutralization of the beam charge, the so-called space charge compensation. The neutralization is an accumulation process that reaches a charge balance between the main beam and the opposite ionized particles. However, this equilibrium is destroyed by the chopper system used during beam ramping. During those transient regimes, the beam optics conditions are not optimal for the beam, producing considerable degradation that can end in serious damage to the accelerator. Thus, analysis of beam behavior at these periods is essential to develop a robust design and an efficient operation of the JAEA-ADS linac. This study presents the beam dynamics of neutralization build-up and chopper operation for the JAEA-ADS LEBT.

Journal Articles

Design of the Low energy beam transport line for the JAEA-ADS linac

Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.545 - 549, 2023/11

The Japan Atomic Energy Agency (JAEA) is proposing a 30-MW proton linear accelerator (linac) for the application of accelerator-driven subcritical system (ADS) technology to achieve nuclear waste transmutation. A major challenge for the JAEA-ADS linac is the efficient transport of a 35 keV proton beam from the ion source to the radio-frequency quadrupole. In order to achieve this goal, we have optimized a magnetostatic low energy beam transport (LEBT) consisting of two solenoids to reduce the transmission of high-charge ions generated by the source and minimize the growth of proton emittance, while taking into account various space-charge compensation scenarios. In this report, we present the optical design and discuss the multiparticle tracking results of the JAEA-ADS LEBT.

Journal Articles

A Plan of Proton Irradiation Facility at J-PARC and possibilities of application to nuclear data research

Maekawa, Fujio

JAEA-Conf 2022-001, p.7 - 13, 2022/11

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is developing the P-T technology combined with accelerator driven systems (ADS). One of critical issues affecting the feasibility of ADS is the proton beam window (PBW) which functions as a boundary between the accelerator and the sub-critical reactor core. The PBW is damaged by a high-intensity proton beam and spallation neutrons produced in the target, and also by flowing high-temperature liquid lead bismuth eutectic alloy which is corrosive to steel materials. To study the materials damage under the ADS environment, J-PARC is proposing a plan of proton irradiation facility which equips with a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam. The facility is also open for versatile purposes such as soft error testing of semi-conductor devises, RI production, materials irradiation for fission and fusion reactors, and so on. Application to nuclear data research with using the proton beam and spallation neutrons is also one of such versatile purposes, and we welcome unique ideas from the nuclear data community.

Journal Articles

Beam physics design of a 30-MW beam transport to the target for an accelerator-driven subcritical system

Yee-Rendon, B.; Meigo, Shinichiro; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Iwamoto, Hiroki; Sugawara, Takanori; Nishihara, Kenji

Journal of Instrumentation (Internet), 17(10), p.P10005_1 - P10005_21, 2022/10

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

To reduce the hazard of minor actinides in nuclear waste, JAEA proposed an accelerator-driven subcritical system (JAEA-ADS). The JAEA-ADS drives a subcritical reactor 800-MWth by 30-MW proton linac delivering the beam to the spallation neutron target inside the reactor. The beam transport to the target (BTT) is required for high-beam power stability and low peak density to ensure the integrity of the beam window. Additionally, the design should have compatible with the reactor design for the maintenance and replacement of the fuel and the beam window. A robust-compact BTT design was developed through massive multiparticle simulations. The beam optics was optimized to guarantee beam window feasibility requirements by providing a low peak density of less than 0.3 $$mu$$A/mm$$^2$$. Beam stability was evaluated and improved by simultaneously applying the linac's input beam and element errors. The input beam errors to the reactor were based on the beam degradation obtained by implementing fast fault compensation in the linac. Those results show that the BTT fulfills the requirements for JAEA-ADS.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:7 Percentile:79.63(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 2; Transmutation Experimental Facility at J-PARC

Maekawa, Fujio; Takei, Hayanori

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05

In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.

Journal Articles

Design of the MEBT for the JAEA-ADS Project

Yee-Rendon, B.; Kondo, Yasuhiro; Maekawa, Fujio; Meigo, Shinichiro; Tamura, Jun

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.790 - 792, 2021/08

The Medium Energy Beam Transport (MEBT) will transport a CW proton beam with a current of 20 mA and energy of 2.5 MeV from the exit of the normal conducting Radiofrequency Quadrupole (RFQ) to the superconducting Half-Wave resonator (HWR) section. The MEBT must provide a good matching between the RFQ and HWR, effective control of the emittance growth and the halo formation, enough space for all the beam diagnostics devices, among others. This work reports the first lattice design and the beam dynamics studies for the MEBT of the JAEA-ADS.

JAEA Reports

Safety design report on J-PARC Transmutation Physics Experimental Facility (TEF-P)

Partitioning and Transmutation Technology Division, Nuclear Science and Engineering Center

JAEA-Technology 2017-033, 383 Pages, 2018/02

JAEA-Technology-2017-033.pdf:28.16MB

JAEA is pursuing research and development (R&D) on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. Construction of Transmutation Experimental Facility (TEF) is under planning as one of the second phase facilities in the Japan Proton Accelerator Complex (J-PARC) program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a liquid lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded cores, reactor physical properties of the cores are to be studied, and operation experiences of ADS are to be acquired. This report summarizes results of safety design for establishment permit of one of two TEF facilities, TEF-P.

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 1; Pulsed spallation neutron source

Takada, Hiroshi; Haga, Katsuhiro; Teshigawara, Makoto; Aso, Tomokazu; Meigo, Shinichiro; Kogawa, Hiroyuki; Naoe, Takashi; Wakui, Takashi; Oi, Motoki; Harada, Masahide; et al.

Quantum Beam Science (Internet), 1(2), p.8_1 - 8_26, 2017/09

At the Japan Proton Accelerator Research Complex (J-PARC), a pulsed spallation neutron source provides neutrons with high intensity and narrow pulse width to promote researches on a variety of science in the Materials and life science experimental facility. It was designed to be driven by the proton beam with an energy of 3 GeV, a power of 1 MW at a repetition rate of 25 Hz, that is world's highest power level. A mercury target and three types of liquid para-hydrogen moderators are core components of the spallation neutron source. It is still on the way towards the goal to accomplish the operation with a 1 MW proton beam. In this paper, distinctive features of the target-moderator-reflector system of the pulsed spallation neutron source are reviewed.

Journal Articles

J-PARC transmutation experimental facility program and situation of the world

Maekawa, Fujio; Sasa, Toshinobu

Enerugi Rebyu, 37(9), p.15 - 18, 2017/08

Accelerator driven nuclear transmutation systems (ADS) are under development for reducing nuclear waste. The J-PARC Transmutation Experimental Facility program and situation of the world for the ADS development are introduced.

JAEA Reports

Technical design report on J-PARC Transmutation Experimental Facility; ADS Target Test Facility (TEF-T)

Nuclear Transmutation Division, J-PARC Center

JAEA-Technology 2017-003, 539 Pages, 2017/03

JAEA-Technology-2017-003.pdf:59.1MB

JAEA is pursuing R&D on volume reduction and mitigation of degree of harmfulness of high-level radioactive waste based on the "Strategic Energy Plan" issued in April 2014. Construction of Transmutation Experimental Facility is under planning as one of the second phase facilities in the J-PARC program to promote R&D on the transmutation technology with using accelerator driven systems (ADS). The TEF consists of two facilities: ADS Target Test Facility (TEF-T) and Transmutation Physics Experimental Facility (TEF-P). Development of spallation target technology and study on target materials are to be conducted in TEF-T with impinging a high intensity proton beam on a lead-bismuth eutectic target. Whereas in TEF-P, by introducing a proton beam to minor actinide loaded subcritical cores, physical properties of the cores are to be studied, and operation experiences are to be acquired. This report summarizes results of technical design for construction of one of two TEF facilities, TEF-T.

Journal Articles

Impact of PHITS spallation models on the neutronics design of an accelerator-driven system

Iwamoto, Hiroki; Nishihara, Kenji; Iwamoto, Yosuke; Hashimoto, Shintaro; Matsuda, Norihiro; Sato, Tatsuhiko; Harada, Masahide; Maekawa, Fujio

Journal of Nuclear Science and Technology, 53(10), p.1585 - 1594, 2016/10

 Times Cited Count:19 Percentile:83.21(Nuclear Science & Technology)

Journal Articles

Simulation of beam behavior caused by odd harmonics of beam loading in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Toda, Makoto*; Yoshii, Masahito*

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.3443 - 3445, 2016/06

The J-PARC RCS accelerates 2 bunches at the harmonic number 2. The major Fourier component of the beam current is even harmonics. However, the odd harmonics grow under some conditions even though they are very small amplitude at the beginning. Particle tracking simulation suggests that the displacement and the deformation of the bunch are caused by the odd harmonics, it is synchronized with the potential distortion, and it results in the beam instability. We describe the particle tracking simulation results for the odd harmonic beam loading effect in the RCS.

Journal Articles

Measurement of ion species in high current ECR H$$^+$$/D$$^+$$ ion source for IFMIF (International Fusion Materials Irradiation Facility)

Shinto, Katsuhiro; Sen$'e$e, F.*; Ayala, J.-M.*; Bolzon, B.*; Chauvin, N.*; Gobin, R.*; Ichimiya, Ryo; Ihara, Akira; Ikeda, Yukiharu; Kasugai, Atsushi; et al.

Review of Scientific Instruments, 87(2), p.02A727_1 - 02A727_3, 2016/02

 Times Cited Count:9 Percentile:40.54(Instruments & Instrumentation)

Journal Articles

Development of embedded Mach-Zehnder optical waveguide structures in polydimethylsiloxane thin films by proton beam writing

Kada, Wataru*; Miura, Kenta*; Kato, Hijiri*; Saruya, Ryota*; Kubota, Atsushi*; Sato, Takahiro; Koka, Masashi; Ishii, Yasuyuki; Kamiya, Tomihiro; Nishikawa, Hiroyuki*; et al.

Nuclear Instruments and Methods in Physics Research B, 348, p.218 - 222, 2015/04

 Times Cited Count:8 Percentile:53.32(Instruments & Instrumentation)

Journal Articles

Advanced design of high-intensity beam transport line in J-PARC

Sakamoto, Shinichi; Meigo, Shinichiro; Fujimori, Hiroshi*; Harada, Masahide; Konno, Chikara; Kasugai, Yoshimi; Kai, Tetsuya; Miyake, Yasuhiro*; Ikeda, Yujiro

Nuclear Instruments and Methods in Physics Research A, 562(2), p.638 - 641, 2006/06

 Times Cited Count:9 Percentile:53.07(Instruments & Instrumentation)

Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC) is an experimental facility where neutron and muon beams are provided as powerful probes. They are generated with high-intensity proton beam supplied through a 3-GeV proton beam transport (3NBT) line. Its beam optics and components were designed to transport the proton beam of large emittance with extremely low loss rate. The 3NBT accommodates an intermediate target that causes large beam loss. The scheme of the cascade target system was carefully devised to overcome difficulties due to high radiation.

Journal Articles

Positive and negative ion sources for magnetic fusion

Hemsworth, R. S.*; Inoue, Takashi

IEEE Transactions on Plasma Science, 33(6), p.1799 - 1813, 2005/12

 Times Cited Count:105 Percentile:93.52(Physics, Fluids & Plasmas)

The positive or negative ion sources which form the primary components of neutral beam injection systems used in magnetic fusion have to meet simultaneously several demanding requirements. This paper describes the underlying physics of modern positive ion sources, which provide the required high proton fraction ($$>$$90%) and high current density ($$approx$$2 kA/m$$^{2}$$) at a low source pressure (0.4 Pa) with a high electrical efficiency and uniformity across the accelerator grids. The development of negative ion sources, which are required if high energy neutral beams are to be produced, is explained. The paper reports that negative ion sources have achieved many of the parameters required of sources for the neutral beam injectors of future fusion devices and reactors, $$>$$200 A/m$$^{2}$$ of D$$^{-}$$ at low pressure, $$<$$0.3 Pa, with low co-extracted electron content. The development needed to meet all the requiremens of future systems is briefly discussed.

Journal Articles

Derivation of simple evaluation method for thermal shock damage on accelerator materials caused by out-of-control beam pulses and its application to J-PARC

Takei, Hayanori; Kobayashi, Hitoshi*

Journal of Nuclear Science and Technology, 42(12), p.1032 - 1039, 2005/12

 Times Cited Count:3 Percentile:23.81(Nuclear Science & Technology)

In high-intensity proton accelerator facilities, a failure of an electromagnet that steers beam pulses may result in thermal shock damage on the accelerator component by injecting an out-of-control pulse. It is important that a Machine Protection System (MPS) is appropriately designed to prevent this damage in the facilities such as Japan Proton Accelerator Research Complex (J-PARC). In this study, the simple evaluation method for the allowable injection time before the operation of the MPS was derived from the relation between the thermal stress and the yield stress of materials.The derived evaluation method was then applied to J-PARC. The allowable injection time for each component ranged from 0.1 to 70 $$mu$$s.

65 (Records 1-20 displayed on this page)