Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka
Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01
Zhou, Y.*; Song, W.*; Zhang, F.*; Wu, Y.*; Lei, Z.*; Jiao, M.*; Zhang, X.*; Dong, J.*; Zhang, Y.*; Yang, M.*; et al.
Journal of Alloys and Compounds, 971, p.172635_1 - 172635_7, 2024/01
Suzuki, Seiya; Nemoto, Yoshihiro*; Shiiki, Natsumi*; Nakayama, Yoshiko*; Takeguchi, Masaki*
Annalen der Physik, 535(9), p.2300122_1 - 2300122_12, 2023/09
Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)Kawano, Takahiro*; Mizuta, Naoki; Ueta, Shohei; Tachibana, Yukio; Yoshida, Katsumi*
JAEA-Technology 2023-014, 37 Pages, 2023/08
Fuel compact for High Temperature Gas-cooled Reactor (HTGR) is fabricated by calcinating a matrix consisting of graphite and binder with the coated fuel particle. The SiC-matrixed fuel compact uses a new matrix made of silicon carbide (SiC) replacing the conventional graphite. Applying the SiC-matrixed fuel compact for HTGRs is expected to improve their performance such as power densities. In this study, the sintering conditions for applying SiC as the matrix of fuel compacts for HTGR are selected, and the density and thermal conductivity of the prototype SiC are measured.
Yamazaki, Yasuhiro*; Shinomiya, Keisuke*; Okumura, Tadaharu*; Suzuki, Kenji*; Shobu, Takahisa; Nakamura, Yuiga*
Quantum Beam Science (Internet), 7(2), p.14_1 - 14_12, 2023/05
Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*
Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04
Times Cited Count:0 Percentile:71.2(Materials Science, Multidisciplinary)Cao, Y.*; Zhou, H.*; Khmelevskyi, S.*; Lin, K.*; Avdeev, M.*; Wang, C.-W.*; Wang, B.*; Hu, F.*; Kato, Kenichi*; Hattori, Takanori; et al.
Chemistry of Materials, 35(8), p.3249 - 3255, 2023/04
Times Cited Count:0 Percentile:0(Chemistry, Physical)Hydrostatic and chemical pressure are efficient stimuli to alter the crystal structure and are commonly used for tuning electronic and magnetic properties in materials science. However, chemical pressure is difficult to quantify and a clear correspondence between these two types of pressure is still lacking. Here, we study intermetallic candidates for a permanent magnet with a negative thermal expansion (NTE). Based on in situ synchrotron X-ray diffraction, negative chemical pressure is revealed in HoFe
on Al doping and quantitatively evaluated by using temperature and pressure dependence of unit cell volume. A combination of magnetization and neutron diffraction measurements also allowed one to compare the effect of chemical pressure on magnetic ordering with that of hydrostatic pressure. Intriguingly, pressure can be used to control suppression and enhancement of NTE. Electronic structure calculations indicate that pressure affected the top of the majority band with respect to the Fermi level, which has implications for the magnetic stability, which in turn plays a critical role in modulating magnetism and NTE. This work presents a good example of understanding the effect of pressure and utilizing it to control properties of functional materials.
Miyakawa, Kazuya; Nakata, Kotaro*
JAEA-Data/Code 2022-013, 19 Pages, 2023/03
In the Horonobe Underground Research Laboratory (URL) project, groundwater chemistry was analyzed to investigate changes due to the excavation of the underground facility and to review geochemical models until the fiscal year 2019. From the fiscal year 2020, to proceed remaining important issues deduced from the conclusion of the investigations during the fiscal year 2015-2019, primary data such as groundwater chemistry need to be successively acquired. Here, the chemical analysis of 54 groundwater samples in 2022 from boreholes drilled in the 140 m, 250 m, 350 m gallery in the Horonobe URL, and water rings settled in three vertical shafts is presented. Analytical results include groundwater chemistry such as pH, electrical conductivity, dissolved components (Na, K
, Ca
, Mg
, Li
, NH
, F
, Cl
, Br
, NO
, NO
, PO
, SO
, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, alkalinity, dissolved organic carbon, dissolved inorganic carbon, CO
, HCO
, Fe
, sulfide), and
O,
D along with a detailed description of analytical methods.
Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori
JAEA-Review 2022-049, 76 Pages, 2023/01
Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.
Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*
JAEA-Review 2022-046, 108 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario" conducted in FY2021. The research on fuel debris so far is based on TMI-2 accident that is typical PWR accident but resent scenario analysis of sever accident progression and sampling data of the in reactor materials predict that fuel debris is diversity and piled up complicatedly depending on the unit and in reactor position. We are necessary to presume the thermodynamic condition of fuel debris during the accident in order to estimate accumulation state of debris.
Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Nagasawa, Kazuyoshi*; Kurihara, Akikazu; Tanaka, Masaaki
JAEA-Research 2022-009, 125 Pages, 2023/01
The design studies of an advanced loop-type sodium-cooled fast reactor (Advanced- SFR) have been carried out by the Japan Atomic Energy Agency (JAEA). At the core outlet, temperature fluctuations occur due to mixing of hot sodium from the fuel assembly with cold sodium from the control rod channels and radial blanket assembly. These temperature fluctuations may cause high cycle thermal fatigue around a bottom of Upper Internal Structure (UIS) located above the core. Therefore, we conducted a water experiment using a 1/3 scale 60 degree sector model that simulated the upper plenum of the advanced loop-type sodium-cooled reactor. And we proposed some countermeasures against large temperature fluctuations that occur at the bottom of the UIS. In this report, we have summarized that the effect of the countermeasure structure to mitigate the temperature fluctuation generated at the bottom of UIS is confirmed, and the Reynolds number dependency of the countermeasure structure and the characteristics of the temperature fluctuation on the control rod surface.
Sawaguchi, Takahiro*; Tomota, Yo*; Yoshinaka, Fumiyoshi*; Harjo, S.
Acta Materialia, 242, p.118494_1 - 118494_14, 2023/01
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Guo, B.*; Mao, W.; Chong, Y.*; Shibata, Akinobu*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01
Times Cited Count:2 Percentile:46.51(Materials Science, Multidisciplinary)Wu, P.*; Murai, Naoki; Li, T.*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kofu, Maiko; Nakajima, Kenji; Xia, K.*; Peng, K.*; Zhang, Y.*; et al.
New Journal of Physics (Internet), 25(1), p.013032_1 - 013032_11, 2023/01
Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 11 Pages, 2023/00
Times Cited Count:1 Percentile:84.98(Nuclear Science & Technology)The thermal-neutron capture cross section () and resonance integral (I
) for
Nb among nuclides for decommissioning were measured by an activation method and the half-life of
Nb by mass analysis. Niobium-93 samples were irradiated with a hydraulic conveyer installed in the research reactor in Institute for Integral Radiation and Nuclear Science, Kyoto University. Gold-aluminum, cobalt-aluminum alloy wires were used to monitor thermal-neutron fluxes and epi-thermal Westcott's indexes at an irradiation position. A 25-
m-thick gadolinium foil was used to sort out reactions ascribe to thermal-and epi-thermal neutrons. Its thickness provided a cut-off energy of 0.133 eV. In order to attenuate radioactivity of
Ta due to impurities, the Nb samples were cooled for nearly 2 years. The induced radio activity in the monitors and Nb samples were measured by
-ray spectroscopy. In analysis based on Westcott's convention, the
and I
values were derived as 1.11
0.04 barn and 10.5
0.6 barn, respectively. After the
-ray measurements, mass analysis was applied to the Nb sample to obtain the reaction rate. By combining data obtained by both
-ray spectroscopy and mass analysis, the half-life of
Nb was derived as (2.00
0.15)
10
years.
Mohamad, A. B.; Udagawa, Yutaka
Nuclear Technology, 16 Pages, 2023/00
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Fukushima University*
JAEA-Review 2022-030, 94 Pages, 2022/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of methodology combining chemical analysis technology with informatics technology to understand perspectives property of debris and tie-up style human resource development" conducted in FY2021. The present study aims to Goal of this study is to implement a research plan relate to a development of combinational technology of new chemical analysis with informatics, and the aim is to develop new system for whole image estimation system using small quantities of information. Conducting the collaboration study with JAEA researchers (tie-up style) make connect to the development of human resource from master's course student to post-doctoral researchers who are progress …
Falyouna, O.*; Maamoun, I.; Ghosh, S.*; Malloum, A.*; Othmani, A.*; Eljamal, O.*; Amen, T. W. M.*; Oroke, A.*; Bornman, C.*; Ahmadi, S.*; et al.
Journal of Molecular Liquids, 368, Part B, p.120726_1 - 120726_25, 2022/12
Times Cited Count:2 Percentile:34.85(Chemistry, Physical)Nakamura, Shoji; Shibahara, Yuji*; Endo, Shunsuke; Kimura, Atsushi
Journal of Nuclear Science and Technology, 59(11), p.1388 - 1398, 2022/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)The present study selected Np among radioactive nuclides and aimed to measure the thermal-neutron capture cross-section for
Np in a well-thermalized neutron field by an activation method. A
Np standard solution was used for irradiation samples. A thermal-neutron flux at an irradiation position was measured with neutron flux monitors:
Sc,
Co,
Mo,
Ta and
Au. The
Np sample and flux monitors were irradiated together for 30 minutes in the graphite thermal column equipped with the Kyoto University Research Reactor. The similar irradiation was carried out twice. After the irradiations, the
Np samples were quantified using 312-keV gamma ray emitted from
Pa in a radiation equilibrium with
Np. The reaction rates of
Np were obtained from gamma-ray peak net counts given by
Np, and then the thermal-neutron capture cross-section of
Np was found to be 173.8
4.4 barn by averaging the results obtained by the two irradiations. The present result was in agreement with the reported data given by a time-of-flight method within the limit of uncertainty.
Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Sawaguchi, Takahiro*; Yang, Z.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
ISIJ International, 62(10), p.2036 - 2042, 2022/10
Times Cited Count:4 Percentile:78.21(Metallurgy & Metallurgical Engineering)