Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru
JAEA-Review 2020-068, 114 Pages, 2021/03
Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.
Okuno, Hiroshi; Yamamoto, Kazuya
JAEA-Review 2020-066, 32 Pages, 2021/02
The International Atomic Energy Agency (abbreviated as IAEA) has been implementing the Asian Nuclear Safety Network (abbreviated as ANSN) activities since 2002. As part of this effort, Topical Group on Emergency Preparedness and Response (abbreviated as EPRTG) for nuclear or radiation disasters was established in 2006 under the umbrella of the ANSN. Based on the EPRTG proposal, the IAEA conducted 23 Asian regional workshops in the 12 years from 2006 to 2017. Typical topical fields of the regional workshops were nuclear emergency drills, emergency medical care, long-term response after nuclear/radiological emergency, international cooperation, national nuclear disaster prevention system. The Japan Atomic Energy Agency has produced coordinators for EPRTG since its establishment and has led its activities since then. This report summarizes the Asian regional workshops conducted by the IAEA based on the recommendations of the EPRTG.
Cantarel, V.; Lambertin, D.*; Labed, V.*; Yamagishi, Isao
Journal of Nuclear Science and Technology, 58(1), p.62 - 71, 2021/01
Times Cited Count:5 Percentile:47.80(Nuclear Science & Technology)The gas production of wasteforms is a major safety concern for encapsulating active nuclear wastes. For geopolymers and cements, the H produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the gas composition evolution around geopolymers was monitored on line under Co gamma irradiation. Transient evolution of the hydrogen production yield was measured for samples with different formulations. The rate of its evolution and the final values are consistent with the presence of a chemical reaction of the pseudo-first order consuming hydrogen in the samples. The results show this phenomenon can significantly reduce the hydrogen source term of geopolymer wasteform provided their diffusion constant remains low. Lower hydrogen production rates and faster kinetics were observed with geopolymers formulations in which pore water pH was higher. Besides hydrogen production, a steady oxygen consumption was observed for all geopolymers samples. The oxygen consumption rates are proportional to the diffusion constants estimated in the modelization of hydrogen recombination by a pseudo first order reaction.
Task Force on Writing Textbook of Nuclear Fuel Materials
JAEA-Review 2020-007, 165 Pages, 2020/07
The present textbook was written by Task Force on Writing Textbook of Nuclear Fuel Materials at the Nuclear Science Research Institute in order to improve technological abilities of engineers and researchers who handle nuclear fuel materials. The taskforce consists of young and middle class engineers each having certification for chief engineer of nuclear fuel. The present textbook mainly deals with uranium and plutonium, and shows their nuclear properties, physical and chemical properties, and radiation effects on materials and human body. It also presents basic matters for safety handling of nuclear fuel materials, such as handling of nuclear fuel materials with hood and glovebox, important points in storage and transportation of nuclear fuel materials, radioactive waste management, radiation safety management, and emergency management. Furthermore, incident cases at domestic and foreign nuclear fuel materials facilities are compiled to learn from the past.
Saito, Tatsuo; Kobayashi, Shinichi*; Zaitsu, Tomohisa*; Shimo, Michikuni*; Fumoto, Hiromichi*
Hoken Butsuri (Internet), 55(2), p.86 - 91, 2020/06
Safety cases for disposal of uranium bearing waste and NORM with uranium has not yet been fully developed in Japan, because of safety assessment of extraordinary long timespan and uncertainty in unexpected incidents with uncompleted radon impact evaluation measures arising from uranium waste disposal facility in far future. Our task group of radiation protection for wastes with natural radioactive nuclides studied some safety cases with disposal of uranium bearing waste and NORM in terms of nuclides, U-235, U-238 and their progenies, and comprehensively discussed the current state of their disposal in comparison to the ideas of international organizations such as ICRP and IAEA. We developed our ideas for long term uncertainty and radon with the knowledge of experts in each related area of direction, repeating discussions, focusing out the orientation of each directions, and outlined the recommendations with our suggestions of solving important issues in the future to be addressed.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*
Annals of Nuclear Energy, 96, p.137 - 147, 2016/10
Times Cited Count:5 Percentile:41.31(Nuclear Science & Technology)After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.
Kitamura, Akira; Takase, Hiroyasu*; Metcalfe, R.*; Penfold, J.*
Journal of Nuclear Science and Technology, 53(1), p.19 - 33, 2016/01
Times Cited Count:2 Percentile:7.29(Nuclear Science & Technology)Not only geological disposal of vitrified waste generated by spent fuel (SF) reprocessing, but also the possibility of disposing of SF itself in deep geological strata (hereinafter "direct disposal of SF") may be considered in the Japanese geological disposal program. In the case of direct disposal of SF, the radioactivity of the waste is higher and the potential effects of the radiation are greater. Specific examples of the possible effects of radiation include: increased amounts of canister corrosion; generation of oxidizing chemical species in conjunction with radiation degradation of groundwater and accompanying oxidation of reducing groundwater; and increase in the dissolution rate and the solubility of SF. Therefore, the influences of radiation, which are not expected to be significant in the case of geological disposal of vitrified waste, must be considered in safety assessments for direct disposal of SF. Focusing especially on the effects of -radiation in safety assessment, this study has reviewed safety assessments in countries other than Japan that are planning direct disposal of SF. The review has identified issues relevant to safety assessment for the direct disposal of SF in Japan.
Kitamura, Akira; Takase, Hiroyasu*
Journal of Nuclear Science and Technology, 53(1), p.1 - 18, 2016/01
Times Cited Count:4 Percentile:16.67(Nuclear Science & Technology)Not only geological disposal of vitrified waste generated by spent fuel (SF) reprocessing, but also the possibility of disposing of SF itself in deep geological strata (hereinafter "direct disposal of SF") may be considered in the Japanese geological disposal program. In the case of direct disposal of SF, the radioactivity of the waste is higher and the potential effects of the radiation are greater. Specific examples of the possible effects of radiation include: increased amounts of canister corrosion; generation of oxidizing chemical species in conjunction with radiation degradation of groundwater and accompanying oxidation of reducing groundwater; and increase in the dissolution rate and the solubility of SF. Focusing especially on the effects of -radiation in safety assessment, this study has reviewed research into the effects of -radiation on the spent nuclear fuel, canisters and outside canisters.
Nakashima, Hiroshi; Nakane, Yoshihiro; Masukawa, Fumihiro; Matsuda, Norihiro; Oguri, Tomomi*; Nakano, Hideo*; Sasamoto, Nobuo*; Shibata, Tokushi*; Suzuki, Takenori*; Miura, Taichi*; et al.
Radiation Protection Dosimetry, 115(1-4), p.564 - 568, 2005/12
Times Cited Count:8 Percentile:48.53(Environmental Sciences)The High Intensity Proton Accelerator Project, named as J-PARC, is in progress, aiming at studies on the latest basic science and the advancing nuclear technology. In the project, the high-energy proton accelerator complex of the world highest intensity is under construction. In order to establish a reasonable shielding design, both simplified and detailed design methods were used in the shielding design of J-PARC. This paper reviews the present status of the radiation safety design study for J-PARC.
Asano, Yoshihiro
SPring-8 Information, 10(1), p.35 - 38, 2005/01
no abstracts in English
Ishitsuka, Etsuo; Kawamura, Hiroshi; Tanaka, Satoru*
JAERI-Conf 2004-006, 347 Pages, 2004/03
This report is the Proceedings of the Sixth International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on December 2-5, 2003, at SEAGAIA in Miyazaki City, Japan with 69 participants who attended from Europe, the Russian Federation, Kazakhstan, Ukraine, China, the United States and Japan. The topics for papers were arranged into nine sessions; Status of beryllium study, Plasma and tritium interactions, ITER oriented issues, Neutron irradiation effects, Beryllide application, Disposal and recycling, Molten salt, Health and safety issues and Panel discussion. The issues in these topics were discussed intensively on the bases of 49 presentations. In the Panel discussion, the international collaboration for three topics, i.e., Neutron irradiation effects, Beryllide application, Recycling and Disposal, were discussed, and necessary items for the international collaboration were proposed.
Nishitani, Takeo; Ochiai, Kentaro; Yoshida, Shigeo*; Tanaka, Ryohei*; Wakisaka, Masashi*; Nakao, Makoto*; Sato, Satoshi; Yamauchi, Michinori*; Hori, Junichi; Wada, Masayuki*; et al.
Journal of Nuclear Science and Technology, 41(Suppl.4), p.58 - 61, 2004/03
no abstracts in English
Nuclear Safety Research Center Planning and Analysis Division
JAERI-Review 2003-040, 298 Pages, 2004/01
JAERl is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Annual Plan for Nuclear Safety Research issued by the Nuclear Safety Commission. The fields of conducting safety research at JAERl are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003.
Asano, Yoshihiro
Hoshako, 16(2), p.120 - 122, 2003/03
no abstracts in English
Fuketa, Toyoshi; Sasajima, Hideo; Sugiyama, Tomoyuki
Nuclear Technology, 133(1), p.50 - 62, 2001/01
Times Cited Count:67 Percentile:96.79(Nuclear Science & Technology)no abstracts in English
Center for Neutron Science
JAERI-Tech 99-031, 453 Pages, 1999/03
no abstracts in English
Asano, Yoshihiro; Sasamoto, Nobuo
Radiation Protection Dosimetry, 82(3), p.167 - 174, 1999/00
Times Cited Count:9 Percentile:56.80(Environmental Sciences)no abstracts in English
Asano, Yoshihiro; Sasamoto, Nobuo
JAERI-Tech 98-009, 90 Pages, 1998/03
no abstracts in English
Fuketa, Toyoshi; Nagase, Fumihisa; Nakamura, Takehiko; Uetsuka, Hiroshi; Ishijima, Kiyomi
NUREG/CP-0166, 3, p.223 - 241, 1998/00
no abstracts in English
Takada, Shoji; Suzuki, Kunihiro; Inagaki, Yoshiyuki; Sudo, Yukio
Heat Transfer-Jpn. Res., 26(3), p.159 - 175, 1997/00
no abstracts in English