Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 36

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evolution of radionuclide transport and retardation processes in uplifting granitic rocks, Part 2; Modelling coupled processes in uplift scenarios

Metcalfe, R.*; Benbow, S. J.*; Kawama, Daisuke*; Tachi, Yukio

Science of the Total Environment, 958, p.177690_1 - 177690_17, 2025/01

Uplifting fractured granitic rocks occur in substantial areas of countries such as Japan. A repository site would be selected in such an area only if it is possible to make a safety case, accounting for the changing conditions during uplift. The safety case must include robust arguments that chemical processes in the rocks around the repository will contribute sufficiently to minimise radiological doses to biosphere receptors. To provide confidence in the safety arguments, numerical models need to be sufficiently realistic, but also parameterised conservatively (pessimistically). However, model development is challenging because uplift involves many complex couplings between groundwater flow, chemical reactions between water and rock, and changing rock properties. The couplings would affect radionuclide mobilisation and retardation, by influencing diffusive radionuclide fluxes between groundwater flowing in fractures and effectively immobile porewater in the rock matrix and radionuclide partitioning between water and solid phases, via: (i) mineral precipitation/dissolution; (ii) mineral alteration; and (iii) sorption/desorption. It is difficult to represent all this complexity in numerical models while showing that they are parameterised conservatively. Here we present a modelling approach, illustrated by simulation cases for some exemplar radioelements, to identify realistically conservative process conceptualisations and model parameterisations.

Journal Articles

Evolution of radionuclide transport and retardation processes in uplifting granitic rocks, Part 1; Key processes, conceptual models and scenario

Metcalfe, R.*; Tachi, Yukio; Sasao, Eiji; Kawama, Daisuke*

Science of the Total Environment, 957, p.177375_1 - 177375_17, 2024/12

A safety case for an underground radioactive waste repository must show that groundwater will not in future transport radionuclides from the repository to the near-surface environment (the biosphere) in harmful quantities. Safety cases are developed step-wise throughout a programme to site and develop a repository. At early stages, before a site is selected, safety cases are generic and based on simplified safety assessment models of the disposal system that have conservative parameter values. Later, when site-specific conditions are known, more realistic models are needed for the long-term geo-environmental evolution and their impacts on radionuclide migration/retention. Uplift is one such environmental change, which may be particularly important in countries near active tectonic plate boundaries, such as Japan. Here we review the state of knowledge about how the properties of fractured granitic rocks evolve during uplift, based on studies in Japan. Hence, we present conceptual models and a generic scenario for mass transport and retardation processes in uplifting granitic rocks as a basis for realistic numerical models to underpin safety assessment.

Journal Articles

Some considerations on the dependence to numerical schemes of Lagrangian radionuclide transport models for the aquatic environment

Peri$'a$$~n$ez, R.*; Brovchenko, I.*; Jung, K. T.*; Kim, K. O.*; Liptak, L.*; Little, A.*; Kobayashi, Takuya; Maderich, V.*; Min, B. I.*; Suh, K. S.*

Journal of Environmental Radioactivity, 261, p.107138_1 - 107138_8, 2023/05

 Times Cited Count:3 Percentile:31.62(Environmental Sciences)

Lagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles whose trajectories are calculated along time and thus these models do not require a spatial discretization. In this paper we investigate the dependence of a Lagrangian model output with the grid spacing which is used to calculate concentrations from the final distribution of particles, with the number of particles in the simulation and with the interpolation schemes which are required because of the discrete nature of the water circulation data used to feed the model.

Journal Articles

Third international challenge to model the medium- to long-range transport of radioxenon to four Comprehensive Nuclear-Test-Ban Treaty monitoring stations

Maurer, C.*; Galmarini, S.*; Solazzo, E.*; Ku$'s$mierczyk-Michulec, J.*; Bar$'e$, J.*; Kalinowski, M.*; Schoeppner, M.*; Bourgouin, P.*; Crawford, A.*; Stein, A.*; et al.

Journal of Environmental Radioactivity, 255, p.106968_1 - 106968_27, 2022/12

 Times Cited Count:5 Percentile:33.52(Environmental Sciences)

After performing multi-model exercises in 2015 and 2016, a comprehensive Xe-133 atmospheric transport modeling challenge was organized in 2019. For evaluation measured samples for the same time frame were gathered from four International Monitoring System stations located in Europe and North America with overall considerable influence of IRE and/or CNL emissions. As a lesion learnt from the 2nd ATM-Challenge participants were prompted to work with controlled and harmonized model set ups to make runs more comparable, but also to increase diversity. Effects of transport errors, not properly characterized remaining emitters and long IMS sampling times (12 to 24 hours) undoubtedly interfere with the effect of high-quality IRE and CNL stack data. An ensemble based on a few arbitrary submissions is good enough to forecast the Xe-133 background at the stations investigated. The effective ensemble size is below five.

Journal Articles

Stochastic estimation of radionuclide composition in wastes generated at Fukushima Daiichi Nuclear Power Station using Bayesian inference

Sugiyama, Daisuke*; Nakabayashi, Ryo*; Tanaka, Shingo*; Koma, Yoshikazu; Takahatake, Yoko

Journal of Nuclear Science and Technology, 58(4), p.493 - 506, 2021/04

 Times Cited Count:2 Percentile:20.20(Nuclear Science & Technology)

Journal Articles

Impact of soil erosion potential uncertainties on numerical simulations of the environmental fate of radiocesium in the Abukuma River basin

Ikenoue, Tsubasa; Shimadera, Hikari*; Kondo, Akira*

Journal of Environmental Radioactivity, 225, p.106452_1 - 106452_12, 2020/12

 Times Cited Count:5 Percentile:18.02(Environmental Sciences)

This study focused on the uncertainty of the factors of the Universal Soil Loss Equation (USLE) and evaluated its impacts on the environmental fate of $$^{137}$$Cs simulated by a radiocesium transport model in the Abukuma River basin. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). The simulation results showed total suspended sediment and $$^{137}$$Cs outflows were the most sensitive to C and P among the all factors. Therefore, land cover and soil erosion prevention act have the great impact on outflow of suspended sediment and $$^{137}$$Cs. Focusing on land use, the outflow rates of $$^{137}$$Cs from the forest areas, croplands, and undisturbed paddy fields were large. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of $$^{137}$$Cs.

JAEA Reports

Basis for handling of nuclear fuel materials (Second edition)

Task Force on Writing Textbook of Nuclear Fuel Materials

JAEA-Review 2020-007, 165 Pages, 2020/07

JAEA-Review-2020-007.pdf:6.63MB

The present textbook was written by Task Force on Writing Textbook of Nuclear Fuel Materials at the Nuclear Science Research Institute in order to improve technological abilities of engineers and researchers who handle nuclear fuel materials. The taskforce consists of young and middle class engineers each having certification for chief engineer of nuclear fuel. The present textbook mainly deals with uranium and plutonium, and shows their nuclear properties, physical and chemical properties, and radiation effects on materials and human body. It also presents basic matters for safety handling of nuclear fuel materials, such as handling of nuclear fuel materials with hood and glovebox, important points in storage and transportation of nuclear fuel materials, radioactive waste management, radiation safety management, and emergency management. Furthermore, incident cases at domestic and foreign nuclear fuel materials facilities are compiled to learn from the past.

Journal Articles

Development of calculation methodology for estimation of radionuclide composition in wastes generated at Fukushima Daiichi Nuclear Power Station

Sugiyama, Daisuke*; Nakabayashi, Ryo*; Koma, Yoshikazu; Takahatake, Yoko; Tsukamoto, Masaki*

Journal of Nuclear Science and Technology, 56(9-10), p.881 - 890, 2019/09

 Times Cited Count:4 Percentile:33.76(Nuclear Science & Technology)

Journal Articles

Neutronics assessment of advanced shield materials using metal hydride and borohydride for fusion reactors

Hayashi, Takao; Tobita, Kenji; Nishio, Satoshi; Ikeda, Kazuki*; Nakamori, Yuko*; Orimo, Shinichi*; DEMO Plant Design Team

Fusion Engineering and Design, 81(8-14), p.1285 - 1290, 2006/02

 Times Cited Count:27 Percentile:84.58(Nuclear Science & Technology)

Neutron transport calculations were carried out to evaluate the capability of metal hydrides and borohydrides as an advanced shielding material. Some hydrides indicated considerably higher hydrogen content than polyethylene and solid hydrogen. The hydrogen-rich hydrides show superior neutron shielding capability to the conventional materials. From the temperature dependence of dissociation pressure, ZrH$$_{2}$$ and TiH$$_{2}$$ can be used without releasing hydrogen at the temperature of less than 640 $$^{circ}$$C at 1 atm. ZrH$$_{2}$$ and Mg(BH$$_{4}$$)$$_{2}$$ can reduce the thickness of the shield by 30% and 20% compared to a combination of steel and water, respectively. Mixing some hydrides with F82H produces considerable effects in $$gamma$$-ray shielding. The neutron and $$gamma$$-ray shielding capabilities decrease in order of ZrH$$_{2}$$ $$>$$ Mg(BH$$_{4}$$)$$_{2}$$ and F82H $$>$$ TiH$$_{2}$$ and F82H $$>$$ water and F82H.

JAEA Reports

Treatment and decomposition of HLW-79Y-4T type transportation cask for liquid radioactive fuel material

Yamaguchi, Isoo*; Morita, Yasuji; Fujiwara, Takeshi; Yamagishi, Isao

JAERI-Tech 2005-054, 61 Pages, 2005/09

JAERI-Tech-2005-054.pdf:12.38MB

The HLW-79Y-4T type transportation cask for liquid radioactive fuel material (commonly called "Cendrillon") was imported from France and modified for Japanese regulation in order to obtain high-level radioactive liquid waste (HLW) for partitioning tests in JAERI by transportation from Tokai Establishment of Japan Nuclear Fuel Cycle Development Institute. The cask was used for the HLW transportation five times from 1982 to 1990. After that, it was kept and maintained for next transportation of HLW from facilities outside JAERI. Finally, we decided to decompose the cask because HLW can be obtained in JAERI Tokai. For the decomposition, radiation dose and contamination by radioactivity was first measured and then the methods to reduce those levels were determined. The cask was decomposed after the decontamination to separate the part that has high radiation level. The separated part was put in a vessel specially prepared. The present report describes those procedures for the decomposition of the transportation cask.

JAEA Reports

Characterization of the nuclear power plants in decommissioning program and influence evaluation on decommissioning costs

Mizukoshi, Seiji; Oshima, Soichiro; Shimada, Taro

JAERI-Tech 2005-011, 122 Pages, 2005/03

JAERI-Tech-2005-011.pdf:13.25MB

The radiological and physical characteristic on decommissioning, such as component and structure weights and radioactivity of the 1.1 MWe class reference nuclear power plants summarized in the NUREG reports of the US NRC were classified,arranged and compared with the domestic commercial nuclear power plants and JPDR from a view point of dismantling plan and waste management for decommissioning. As the results, it was found that the radioactive component and structure weights was about 28,000ton、and non-radioactive structure weights was about 124,000ton less than the domestic commercial BWR. And it was found that this differences has mainly influenced dismantling costs for decommissioning. Farther, it was found that the concrete element composition rates of B, Ni, Nb and so were differerence of one or more figures btween the reference nuclear power plants and the domestic commercial PWR or JPDR.Also,it was found that the this difference became about two or three times by radioactivity concentration and has mainly influenced transport and disposal costs for decommissioning.

JAEA Reports

JAEA Reports

Study on residual radioactive inventory estimation in reactor decommissioning program (Contract research)

Sukegawa, Takenori; Hatakeyama, Mutsuo; Yanagihara, Satoshi

JAERI-Tech 2001-058, 81 Pages, 2001/09

JAERI-Tech-2001-058.pdf:5.98MB

In general, neutron transport and activation calculation codes are used for residual radioactive inventory estimation; however, it is essential to verify calculations by measurement results because of geometrical complexity of the reactor and so on. The comparison between measured and calculated radioactivity in the JPDR core components showed a relatively good agreement (factor of 2), and it was cleared that water content and weight ratio of steel bars to concrete materials significantly influenced the neutron flux distribution in the biological shield (factor of 2-10 error). The measured radioactivity inside of the reactor pressure vessel wall and at the inner part of the biological shield was compared in detail with the calculations to verify the methodology applied to calculations of radioisotope production. Then it was found that the radioactive inventory could be estimated accurately with combination of calculations and measurement of radioactivity in samples and dose rate distribution for planning of dismantling activities.

JAEA Reports

A Review on studies of the transport and the form of radionuclides in the fluvial environment

Matsunaga, Takeshi

JAERI-Review 2001-018, 121 Pages, 2001/06

JAERI-Review-2001-018.pdf:5.95MB

The present report reviews a series of studies conducted in JAERI which have dealt with the behavior of atmospherically-derived radionuclides in a fluvial environment. The studies cited here firstly include investigations of the evaluation of the transport rate of the atmospherically-derived 137Cs, 210Pb and 7Be from the ground via a river to the downstream areas where the affected water is consumed. The studies validated i) the importance of suspended particulate materials in the fluvial discharge of those radionuclides, and ii) a methodology to estimate the discharge of those radionuclides. Secondly, studies in rivers and lakes in the vicinity of the Chernobyl Nuclear Power Plant revealed the role of natural dissolved organics in affecting the dissolution and transport of 239,240Pu, 241Am through complexation to form soluble species with the aid of a chemical equilibrium model The same sort of a model was also applied successfully for the behavior of iron and manganese (hydr)oxides in river recharged aquifers which could bear riverborne radionuclides.

Journal Articles

Reactivity accident of nuclear submarine at Vladivostok

Takano, Makoto; Romanova, V.*; Yamazawa, Hiromi; Sivintsev, Y.*; Compton, K.*; Novikov, V.*; Parker, F.*

Journal of Nuclear Science and Technology, 38(2), p.143 - 157, 2001/02

no abstracts in English

JAEA Reports

Estimation of longitudinal and transverse dispersivities in the Twin Lake natural gradient tracer tests

Takeda, Seiji; Moltyaner, G. L.*

JAERI-Research 98-031, 28 Pages, 1998/06

JAERI-Research-98-031.pdf:1.29MB

no abstracts in English

Journal Articles

Evaluation of the effect of horizontal diffusion on the long-range atmospheric transport simulation with Chernobyl data

Ishikawa, Hirohiko

Journal of Applied Meteorology, 34(7), p.1653 - 1665, 1995/07

no abstracts in English

Journal Articles

Development of expert system for transport of radioactive materials

; ; ; ; Ikezawa, Yoshio

Proc. of the Int. Radiation Protection Association,Vol. II, p.1654 - 1657, 1993/00

no abstracts in English

JAEA Reports

Handbook for thermal analysis of radioactive material transport casks

JAERI-M 91-061, 119 Pages, 1991/04

JAERI-M-91-061.pdf:1.5MB

no abstracts in English

36 (Records 1-20 displayed on this page)