Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evolution of radionuclide transport and retardation processes in uplifting granitic rocks, Part 2; Modelling coupled processes in uplift scenarios

Metcalfe, R.*; Benbow, S. J.*; Kawama, Daisuke*; Tachi, Yukio

Science of the Total Environment, 958, p.177690_1 - 177690_17, 2025/01

Uplifting fractured granitic rocks occur in substantial areas of countries such as Japan. A repository site would be selected in such an area only if it is possible to make a safety case, accounting for the changing conditions during uplift. The safety case must include robust arguments that chemical processes in the rocks around the repository will contribute sufficiently to minimise radiological doses to biosphere receptors. To provide confidence in the safety arguments, numerical models need to be sufficiently realistic, but also parameterised conservatively (pessimistically). However, model development is challenging because uplift involves many complex couplings between groundwater flow, chemical reactions between water and rock, and changing rock properties. The couplings would affect radionuclide mobilisation and retardation, by influencing diffusive radionuclide fluxes between groundwater flowing in fractures and effectively immobile porewater in the rock matrix and radionuclide partitioning between water and solid phases, via: (i) mineral precipitation/dissolution; (ii) mineral alteration; and (iii) sorption/desorption. It is difficult to represent all this complexity in numerical models while showing that they are parameterised conservatively. Here we present a modelling approach, illustrated by simulation cases for some exemplar radioelements, to identify realistically conservative process conceptualisations and model parameterisations.

Journal Articles

Reproducibility of thermal neutron flux distribution on patient's brain surface with a realistic phantom

Yamamoto, Kazuyoshi; Kumada, Hiroaki; Yamamoto, Tetsuya*; Matsumura, Akira*

Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(2), p.193 - 199, 2004/06

To investigate the possibility of experimental approach for dose evaluation using a realistic phantom that faithfully reproduced the shape of a head, this research considered the manufacture of a patient's realistic phantom and the reappearance of actual medical irradiation conditions. We selected the rapid prototyping technology to produce the realistic phantom from the Computed Tomography (CT) imaging. This phantom was irradiated under the same clinical irradiation condition of this patient, and the thermal neutron distribution on the brain surface was measured in detail. Several subjects on material and data conversion in the production of realistic phantom were mentioned. As a result of reproducing medical irradiation using the realistic phantom, the maximum thermal neutron flux became a value about 22% lower than the surface of the actual brain. If the problems pointed out in this paper are solved, it may also be expected that it would become possible to check computational dosimetry system.

Journal Articles

Comparison of dosimetry by the realistic patient head phantom and by the patient's brain, and the JCDS calculation; A Clinical dosimetry study

Endo, Kiyoshi*; Matsumura, Akira*; Yamamoto, Tetsuya*; Nose, Tadao*; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Kashimura, Takanori*; Otake, Shinichi*

Research and Development in Neutron Capture Therapy, p.425 - 430, 2002/09

Using the Rapid Prototyping Technique, we produced a realistic phantom as a formative model of a patient head. This realistic phantom will contribute to verification of our planning system. However, cross-correlation among the calculations using the JAERI Computational Dosimetry System (JCDS), the realistic phantom, and the in vivo measurements were not fully completed because of the difficulty involved in modeling a post-surgical brain and a thermal neutron shield. The experimental simulation technique using the realistic phantom is a useful tool for more reliable dose planning for the intraoperative BNCT.

Journal Articles

Design concept and experience of a system for prediction of environmental emergency dose information (SPEEDI).

; ; ; ; ; ;

Nihon Genshiryoku Gakkai-Shi, 27(9), p.839 - 850, 1985/00

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

no abstracts in English

Journal Articles

The dose evaluation model in complex terrain by using particle diffusion method combined with three-dimensional wind field

;

Nihon Genshiryoku Gakkai-Shi, 26(6), p.526 - 534, 1984/00

 Times Cited Count:5 Percentile:50.92(Nuclear Science & Technology)

no abstracts in English

Journal Articles

The dose evaluation method emergency by using puff model combined with three-dimensional wind field

;

Nihon Genshiryoku Gakkai-Shi, 26(10), p.897 - 904, 1984/00

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1