Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Metcalfe, R.*; Benbow, S. J.*; Kawama, Daisuke*; Tachi, Yukio
Science of the Total Environment, 958, p.177690_1 - 177690_17, 2025/01
Uplifting fractured granitic rocks occur in substantial areas of countries such as Japan. A repository site would be selected in such an area only if it is possible to make a safety case, accounting for the changing conditions during uplift. The safety case must include robust arguments that chemical processes in the rocks around the repository will contribute sufficiently to minimise radiological doses to biosphere receptors. To provide confidence in the safety arguments, numerical models need to be sufficiently realistic, but also parameterised conservatively (pessimistically). However, model development is challenging because uplift involves many complex couplings between groundwater flow, chemical reactions between water and rock, and changing rock properties. The couplings would affect radionuclide mobilisation and retardation, by influencing diffusive radionuclide fluxes between groundwater flowing in fractures and effectively immobile porewater in the rock matrix and radionuclide partitioning between water and solid phases, via: (i) mineral precipitation/dissolution; (ii) mineral alteration; and (iii) sorption/desorption. It is difficult to represent all this complexity in numerical models while showing that they are parameterised conservatively. Here we present a modelling approach, illustrated by simulation cases for some exemplar radioelements, to identify realistically conservative process conceptualisations and model parameterisations.
Yamamoto, Kazuyoshi; Kumada, Hiroaki; Yamamoto, Tetsuya*; Matsumura, Akira*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(2), p.193 - 199, 2004/06
To investigate the possibility of experimental approach for dose evaluation using a realistic phantom that faithfully reproduced the shape of a head, this research considered the manufacture of a patient's realistic phantom and the reappearance of actual medical irradiation conditions. We selected the rapid prototyping technology to produce the realistic phantom from the Computed Tomography (CT) imaging. This phantom was irradiated under the same clinical irradiation condition of this patient, and the thermal neutron distribution on the brain surface was measured in detail. Several subjects on material and data conversion in the production of realistic phantom were mentioned. As a result of reproducing medical irradiation using the realistic phantom, the maximum thermal neutron flux became a value about 22% lower than the surface of the actual brain. If the problems pointed out in this paper are solved, it may also be expected that it would become possible to check computational dosimetry system.
Endo, Kiyoshi*; Matsumura, Akira*; Yamamoto, Tetsuya*; Nose, Tadao*; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Kashimura, Takanori*; Otake, Shinichi*
Research and Development in Neutron Capture Therapy, p.425 - 430, 2002/09
Using the Rapid Prototyping Technique, we produced a realistic phantom as a formative model of a patient head. This realistic phantom will contribute to verification of our planning system. However, cross-correlation among the calculations using the JAERI Computational Dosimetry System (JCDS), the realistic phantom, and the in vivo measurements were not fully completed because of the difficulty involved in modeling a post-surgical brain and a thermal neutron shield. The experimental simulation technique using the realistic phantom is a useful tool for more reliable dose planning for the intraoperative BNCT.
; ; ; ; ; ;
Nihon Genshiryoku Gakkai-Shi, 27(9), p.839 - 850, 1985/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
;
Nihon Genshiryoku Gakkai-Shi, 26(6), p.526 - 534, 1984/00
Times Cited Count:5 Percentile:50.92(Nuclear Science & Technology)no abstracts in English
;
Nihon Genshiryoku Gakkai-Shi, 26(10), p.897 - 904, 1984/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English