Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Enoeda, Mikio; Akiba, Masato; Tanaka, Satoru*; Shimizu, Akihiko*; Hasegawa, Akira*; Konishi, Satoshi*; Kimura, Akihiko*; Koyama, Akira*; Sagara, Akio*; Muroga, Takeo*
Fusion Engineering and Design, 81(1-7), p.415 - 424, 2006/02
Times Cited Count:63 Percentile:96.31(Nuclear Science & Technology)no abstracts in English
Nishimura, Arata*; Muroga, Takeo*; Takeuchi, Takao*; Nishitani, Takeo; Morioka, Atsuhiko
Fusion Engineering and Design, 81(8-14), p.1675 - 1681, 2006/02
Times Cited Count:3 Percentile:23.92(Nuclear Science & Technology)In a fusion reactor plant, a neutral beam injector (NBI) will be operated for a long time, and it will allow neutron streaming from NBI ports to outside of the plasma vacuum vessel. It requires the superconducting magnet to develop nuclear technology to produce stable magnetic field and to reduce activation of the magnet components. In this report, the back ground of the necessity and the contents of the nuclear technology of the superconducting magnets for fusion application are discussed and some typical investigation results are presented, which are the neutron irradiation effect on NbSn wire, the development of low activation superconducting wire, and the design concept to reduce nuclear heating and nuclear transformation by streaming. In addition, recent activities in high energy particle physics are introduced and potential ripple effect of the technology of the superconducting magnets is described briefly.
Yutani, Toshiaki*; Nakamura, Hiroo; Sugimoto, Masayoshi
JAERI-Tech 2005-036, 10 Pages, 2005/06
In the high flux region of the International Fusion Materials Irradiation Facility (IFMIF), the neutron irradiation damage for iron-based alloys will exceed 20 dpa/ year. An accurate specimen temperature measurement under a large amount of nuclear heating is a key issue but the change of heat transfer of gap between irradiation specimens and specimen holder during irradiation test is inevitable, if gap is filled with an inert gas and temperature is monitored by a thermocouple buried in the specimen holder. A solution to make heat transfer predictable is to fill the gap with a liquid metal (sodium or sodium-potassium alloy). An issue of compatibility between Reduced Activation Ferritic/Martensitic steels and the liquid metalsis addressed in this paper, and some recommendations for designing irradiation rig are presented, such as a purification control before filling liquid metals, or a careful selection of material of rig to avoid carbon mass transfer.
Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Klueh, R. L.*
Materials Transactions, 46(3), p.469 - 474, 2005/03
Times Cited Count:21 Percentile:74.33(Materials Science, Multidisciplinary)The effects of irradiation on precipitation of reduced-activation ferritic/martensitic steels (RAFs) were investigated, and its impacts on the Charpy impact properties and tensile properties were discussed. It was previously reported that RAFs (F82H-IEA and its heat treatment variant, ORNL9Cr-2WVTa, JLF-1 and 2%Ni doped F82H) shows variety of changes on its ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573K up to 5dpa. These differences could not be interpreted as an effect of irradiation hardening caused by dislocation loop formation. The precipitation behavior of the irradiated steels was examined by weight analysis, X-ray diffraction analysis and chemical analysis on extraction residues. These analyses suggested that irradiation caused (1) the increase of the amount of precipitates (mainly MC), (2) increase of Cr and decrease of W contained in precipitates, (3) disappearance of MX (TaC) in ORNL9Cr and JLF-1.
Matsuhiro, Kenjiro; Ando, Masami; Nakamura, Hiroo; Takeuchi, Hiroshi
JAERI-Research 2004-003, 12 Pages, 2004/03
The effect of neutron irradiation damage on tritium permeation through reduced-activation ferritic steel (F82H) at IFMIF target backwall has been estimated. From the results, it has been found that the effective diffusion coefficient of hydrogen in F82H will decrease by 10 % to 20 % under neutron irradiation. Therefore, the amount of tritium permeation for several hundred seconds at the beginning of permeation will be smaller than 80 % to 90 % of that before neutron irradiation. The amount of tritium permeation of F82H at IFMIF target backwall is 1.3x10 g/d (4.7x10 Bq/d). It is 30 times larger than that of 316SS, and is about 8 % of tritium permeation at main loop of IFMIF.
Research Committee for Fusion Reactor; Research Committee for Fusion Materials
JAERI-Review 2003-015, 123 Pages, 2003/05
no abstracts in English
Jitsukawa, Shiro; Tamura, Manabu*; Van der Schaaf, B.*; Klueh, R. L.*; Alamo, A.*; Petersen, C.*; Schirra, M.*; Spaetig, P.*; Odette, G. R.*; Tavassoli, A. A.*; et al.
Journal of Nuclear Materials, 307-311(Part1), p.179 - 186, 2002/12
Times Cited Count:170 Percentile:99.28(Materials Science, Multidisciplinary)Reduced activation ferritic/martensitic steel is the primary candidate structural material for ITER Test Blanket Modules and DEMOnstration fusion reactor because of its excellent dimensional stability under irradiation and lower residual activity as compared with the Ni bearing steels such as the austenitic stainless steels. In this paper, microstructural features, tensile, fracture toughness, creep and fatigue properties of a reduced activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) are reported before and after irradiation, in addition to the design concept used for development of this alloy. A large number of collaborative test results including those generated under the IEA working group implementing agreements are collected and are used to evaluate the feasibility of use of F82H steel as one of the reference alloys. The effect of metallurgical variables on the irradiation hardening is reviewed and compared with the results obtained from irradiation experiments.
Terada, Yasuaki*; Ochiai, Kentaro; Sato, Satoshi; Wada, Masayuki*; Klix, A.; Yamauchi, Michinori*; Hori, Junichi; Nishitani, Takeo
JAERI-Research 2002-019, 70 Pages, 2002/10
D-T neutron irradiation experiments have been carried out with a F82H-containing breeding blanket mock-up of a fusion in order to investigate the activation characteristics of F82H low activation stainless steel. We have measured reaction rates producing 54Mn, 56Mn, 51Cr and 187W in foils of F82H, chromium and tungsten. MCNP calculations were done with evaluated nuclear data from the JENDL-3.2 and the FENDL/E-2.0 files and the results were compared with the measured values. The comparison shows that by using the current data files the reaction rates obtained from the calculations will be overestimated by up to 10-20% for 54Mn, 56Mn and 51Cr, up to 30-40% for 187W, respectively. The calculated values for tungsten are different with the evaluated nuclear data library, which shows that the neutron capture cross sections of tungsten have discrepancy in the resonance region for each nuclear data libraries.
Research Committee for Fusion Reactor; Research Committee for Fusion Materials
JAERI-Review 2002-008, 79 Pages, 2002/03
Joint research committee for fusion reactor and materials was held in Tokyo on July 16, 2001. In the committee, a review of the development programs and the present status on the blanket technology, materials and IFMIF(International Fusion Materials Irradiation Facility) in JAERI and Japanese Universities was reported, and the direction of these R&D was discussed. Moreover, the progress of the collaboration between JAERI and Japanese Universities was discussed. This report consists of the summaries of the presentations and the viewgraphs which were used at the committee.
Akiba, Masato; Ezato, Koichiro; Sato, Kazuyoshi; Suzuki, Satoshi; Hatano, Toshihisa
Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering (SOFE '99), p.381 - 384, 1999/10
no abstracts in English
Takatsu, Hideyuki; Kawamura, Hiroshi; Tanaka, Satoru*
Fusion Engineering and Design, 39-40, p.645 - 650, 1998/09
Times Cited Count:17 Percentile:77.51(Nuclear Science & Technology)no abstracts in English
Takatsu, Hideyuki
Purazuma, Kaku Yugo Gakkai-Shi, 74(5), p.434 - 435, 1998/05
no abstracts in English