Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Klueh, R. L.*
Materials Transactions, 46(3), p.469 - 474, 2005/03
Times Cited Count:21 Percentile:74.19(Materials Science, Multidisciplinary)The effects of irradiation on precipitation of reduced-activation ferritic/martensitic steels (RAFs) were investigated, and its impacts on the Charpy impact properties and tensile properties were discussed. It was previously reported that RAFs (F82H-IEA and its heat treatment variant, ORNL9Cr-2WVTa, JLF-1 and 2%Ni doped F82H) shows variety of changes on its ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573K up to 5dpa. These differences could not be interpreted as an effect of irradiation hardening caused by dislocation loop formation. The precipitation behavior of the irradiated steels was examined by weight analysis, X-ray diffraction analysis and chemical analysis on extraction residues. These analyses suggested that irradiation caused (1) the increase of the amount of precipitates (mainly MC
), (2) increase of Cr and decrease of W contained in precipitates, (3) disappearance of MX (TaC) in ORNL9Cr and JLF-1.
Matsuhiro, Kenjiro; Ando, Masami; Nakamura, Hiroo; Takeuchi, Hiroshi
JAERI-Research 2004-003, 12 Pages, 2004/03
The effect of neutron irradiation damage on tritium permeation through reduced-activation ferritic steel (F82H) at IFMIF target backwall has been estimated. From the results, it has been found that the effective diffusion coefficient of hydrogen in F82H will decrease by 10 % to 20 % under neutron irradiation. Therefore, the amount of tritium permeation for several hundred seconds at the beginning of permeation will be smaller than 80 % to 90 % of that before neutron irradiation. The amount of tritium permeation of F82H at IFMIF target backwall is 1.3x10 g/d (4.7x10
Bq/d). It is 30 times larger than that of 316SS, and is about 8 % of tritium permeation at main loop of IFMIF.