Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ochs, M.*; Dolder, F.*; Tachi, Yukio
Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01
Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.
Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*
JAEA-Review 2021-023, 49 Pages, 2021/12
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to develop a novel method to reduce the volume of contaminated soil caused by an accident at the Fukushima Daiichi Nuclear Power Station. The heavy liquid separation method, which was optimized in the previous year, was applied to nine soils collected in Fukushima Prefecture. As a result, radioactivity concentration and weight of the contaminated soils were reduced by half at six sites by separating the soils into two fractions u
Kato, Takuma*; Nagaoka, Mika; Guo, H.*; Fujita, Hiroki; Aida, Taku*; Smith, R. L. Jr.*
Environmental Science and Pollution Research, 28(39), p.55725 - 55735, 2021/10
Times Cited Count:0 Percentile:0(Environmental Sciences)In this work, hydrothermal leaching was applied to simulated soils (clay minerals vermiculite, montmorillonite, kaolinite) and actual soils (Terunuma, Japan) to generate organic acids with the objective to develop an additive-free screening method for determination of Sr in soil. Stable strontium (SrCl) was adsorbed onto soils for study and ten organic acids were evaluated for leaching Sr from simulated soils under hydrothermal conditions (120 to 200
C) at concentrations up to 0.3 M. For strontium-adsorbed vermiculite (Sr-V), 0.1 M citric acid was found to be effective for leaching Sr at 150
C and 1 h treatment time. Based on these results, the formation of organic acids from organic matter in Terunuma soil was studied. Hydrothermal treatment of Terunuma soil produced a maximum amount of organic acids at 200
C and 0.5 h reaction time. To confirm the possibility for leaching of Sr from Terunuma soil, strontium-adsorbed Terunuma soil (Sr-S) was studied. For Sr-S, hydrothermal treatment at 200
C for 0.5 h reaction time allowed 40% of the Sr to be leached at room temperature, thus demonstrating an additive-free method for screening of Sr in soil. The additive-free hydrothermal leaching method avoids calcination of solids in the first step of chemical analysis and has application to both routine monitoring of metals in soils and to emergency situations.
Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*
JAEA-Review 2020-049, 78 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization" conducted in FY2019.
Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*
JAEA-Review 2020-037, 53 Pages, 2020/12
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil" conducted in FY2019.
Department of Decommissioning and Waste Management
JAEA-Review 2020-012, 103 Pages, 2020/08
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2018 to March 31, 2019. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Yin, X.; Zhang, L.*; Meng, C.*; Inaba, Yusuke*; Wang, X.*; Nitta, Ayako; Koma, Yoshikazu; Takeshita, Kenji*
Journal of Hazardous Materials, 387, p.121677_1 - 121677_10, 2020/04
Collaborative Laboratories for Advanced Decommissioning Science; Shibaura Institute of Technology*
JAEA-Review 2019-028, 71 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the Sintering Solidification Method for Spent Zeolite to Long-term Stabilization". The present study aims to develop the sintering solidification method for zeolites (spent zeolites) that adsorbs continuously generated radionuclides such as cesium. The sintering solidification method is able to stabilize adsorbed radionuclides such as cesium in zeolites by adding a glass as a binder to spent zeolite and sintered it. It is expected that the sintering solidification method is significantly reduce the volume of the solidified body compare with the glass solidification method and to form a stable solidified body equivalent to the calcination solidification method. In this project, we planned to select a glass suitable for the sintering solidification method and optimize the sintering temperature, etc. using non-radioactive nuclides (cold tests), and verify it by using radioactive nuclides (hot tests). In FY2018, we investigated the thermal properties of candidate glasses for binder and the effect of heating atmosphere on the sintering solidification method. Irradiated fuel for preparing simulated contaminated water containing radionuclides was selected and the condition of it was observed. In addition, we surveyed existing research results and latest research trends about solidification of zeolite, calcination solidification and so on.
Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*
JAEA-Review 2019-023, 33 Pages, 2020/01
CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the 'Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil'. After the accident of the Fukushima Daiichi Nuclear Power Station, radioactive cesium has been heterogeneously distributed in surface soil due to the existence of radioactive microparticles and clay minerals. Therefore, the selective removal of these microparticles will lead to the volume reduction of contaminated soil. The present study examines methods for selectively removing radioactive microparticles from soil. Also, in order to reduce the volume of contaminated soil, we search a possibility to practically apply the separation method that uses the difference in specific gravity of particles (heavy liquid separation method).
Department of Decommissioning and Waste Management
JAEA-Review 2019-011, 91 Pages, 2019/10
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2017 to March 31, 2018. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Hirouchi, Jun; Takahara, Shogo; Komagamine, Hiroshi*; Munakata, Masahiro
Proceedings of Asian Symposium on Risk Assessment and Management 2019 (ASRAM 2019) (USB Flash Drive), 7 Pages, 2019/09
no abstracts in English
Tachi, Yukio; Ochs, M.*
Progress in Nuclear Science and Technology (Internet), 5, p.229 - 232, 2018/11
Various types of post-accident radioactive waste have been generated from cleanup and decommissioning activities at the Fukushima Daiichi Nuclear Power Plant. For the disposal of these wastes, perturbation effects resulting from co-existing substances (e.g., organic substances, boron, and salts) are needed to be considered. Such co-existing substances may influence on the radionuclide sorption parameters for the safety assessment of the disposal systems. The present study focuses on developing the methodology to quantify sorption parameters by considering such perturbation effects and illustrating example calculations regarding the sorption reduction factors (SRFs) due to the presence of organic ligands (ISA) for cement systems. Three approaches for the derivations of SRFs for cement-Am-ISA case were compared. These options should be applied as a stepwise manner according to the data availability for the perturbation effects resulting from the co-existing substances.
Hirouchi, Jun; Takahara, Shogo; Komagamine, Hiroshi*; Munakata, Masahiro
Proceedings of Asian Symposium on Risk Assessment and Management 2018 (ASRAM 2018) (USB Flash Drive), 8 Pages, 2018/10
no abstracts in English
Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14) (USB Flash Drive), 10 Pages, 2018/09
Department of Decommissioning and Waste Management
JAEA-Review 2018-008, 87 Pages, 2018/07
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2016 to March 31, 2017. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Garcia-Lodeiro, I.*; Irisawa, Keita; Jin, F.*; Meguro, Yoshihiro; Kinoshita, Hajime*
Cement and Concrete Research, 109, p.243 - 253, 2018/07
Times Cited Count:10 Percentile:57.69(Construction & Building Technology)Yoshida-Ouchi, Hiroko*; Matsuda, Norihiro; Saito, Kimiaki
Journal of Environmental Radioactivity, 187, p.32 - 39, 2018/07
Times Cited Count:9 Percentile:22.62(Environmental Sciences)Yokoyama, Kenji; Yamamoto, Akio*; Kitada, Takanori*
Journal of Nuclear Science and Technology, 55(3), p.319 - 334, 2018/03
Times Cited Count:5 Percentile:64.98(Nuclear Science & Technology)A new formulation of the cross-section adjustment methodology with the dimensionality reduction technique has been derived. This new formulation is proposed as the dimension reduced cross-section adjustment method (DRCA). Since the derivation of DRCA is based on the minimum variance unbiased estimation (MVUE), an assumption of normal distribution is not required. The result of DRCA depends on a user-defined matrix that determines the dimension reduced feature subspace. We have examine three variations of DRCA, namely DRCA1, DRCA2, and DRCA3. Mathematical investigation and numerical verification have revealed that DRCA2 is equivalent to the currently widely used cross-section adjustment method. Moreover, DRCA3 is found to be identical to the cross-section adjustment method based on MVUE, which has been proposed in the previous study.
Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro
Radiation Physics and Chemistry, 140, p.127 - 131, 2017/11
Times Cited Count:2 Percentile:28.88(Chemistry, Physical)Shobu, Nobuhiro
Enerugi Rebyu, 37(10), p.21 - 22, 2017/10
After the Fukushima-Daiichi Nuclear Power Plant Accident, Japan Atomic Energy Agency (JAEA) has been carrying out research and development activities towards the environmental restoration of Fukushima. This paper describes the following representative activities in Fukushima Environmental Safety Center of JAEA, such as the development of environmental monitoring and mapping technologies, the long-term assessment of transport of radio-cesium in the environment of Fukushima, and the technology development for advancing decontamination and volume reduction technologies.