Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 36

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Fabrication and test results of testing equipment for remote-handling of MA fuel, 3; Testing equipment for fuel loading

Tazawa, Yujiro; Nishihara, Kenji; Sugawara, Takanori; Tsujimoto, Kazufumi; Sasa, Toshinobu; Eguchi, Yuta; Kikuchi, Masashi*; Inoue, Akira*

JAEA-Technology 2016-029, 52 Pages, 2016/12

JAEA-Technology-2016-029.pdf:5.34MB

Transmutation Physics Experimental Facility (TEF-P) planned in the J-PARC project uses minor actinide (MA) fuels in the experiments. These MA fuels are highly-radioactive, so the fuel handling equipment in TEF-P is necessary to be designed as remote-handling system. This report summarizes fabrication and test results of the testing equipment for fuel loading that is one of components of the testing equipment for remote-handling of MA fuels. The testing equipment which had a remote-handling system for fuel loading was fabricated. And the test in combination with the mock-up core was performed. Through the test, it was confirmed to load/take the dummy fuel pin to/from the mock-up core without failure. It was shown that the concept design of the fuel loading equipment of TEF-P was reasonable.

Journal Articles

Development of transportation container for the neutron startup source of High Temperature engineering Test Reactor (HTTR)

Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Takada, Shoji; Sawahata, Hiroaki; Kawamoto, Taiki; Hamamoto, Shimpei; Shinohara, Masanori

Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.1034 - 1042, 2016/03

In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing $$^{252}$$Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source which is changed at the interval of approximately ten years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. There were two technical issues for the safety handling work of the neutron holder. The one is the radiation exposure caused by significant movement of the container due to an earthquake, because the conventional transportation container was so large ($$phi$$1240 mm, h1855 mm) that it can not be fixed on the top floor of maintenance pit by bolts. The other is the falling of the neutron holder caused by the difficult remote handling work, because the neutron holder capsule was also so long ($$phi$$155 mm, h1285 mm) that it can not be pulled into the adequate working space in the maintenance pit. Therefore, a new and low cost transportation container, which can solve the issues, was developed. To avoid the neutron and $$gamma$$ ray exposure, smaller transportation container ($$phi$$820mm, h1150 mm) which can be fixed on the top floor of maintenance pit by bolts was developed. In addition, to avoid the falling of the neutron holder, smaller neutron holder capsule ($$phi$$75 mm, h135 mm) with simple handling mechanism which can be treated easily by manipulator was also developed. As the result of development, the neutron holder handling work was safely accomplished. Moreover, a cost reduction for manufacturing was also achieved by simplifying the mechanism of neutron holder capsule and downsizing.

JAEA Reports

Remote handling design for moderator-reflector maintenance in JSNS

Teshigawara, Makoto; Aizawa, Hideyuki; Harada, Masahide; Kinoshita, Hidetaka; Meigo, Shinichiro; Maekawa, Fujio; Kaminaga, Masanori; Kato, Takashi; Ikeda, Yujiro

JAERI-Tech 2005-029, 24 Pages, 2005/05

JAERI-Tech-2005-029.pdf:3.38MB

This report introduces the present design status of remote-handling devices for activated and used components such as moderator and reflector in a spallation neutron source of the Material and Life Science Facility (MLF) at J-PARC. The design concept and maintenance scenario are also mentioned. A key maintenance scenario adopts that the used components should be taken out from the MLF to the other storage facility after the volume reduction of them. Almost full remote handling is available to the maintenance work except for the connection/disconnection pipes of the cooling water. Total six remote handling devices are used for moderator-reflector maintenance. They are also available to the proton beam window and muon target maintenance. Maintenance scenario is separated into two works. One is to replace used components to new ones during beam-stop and the other is dispose used components during beam operation. Required period of replacement work is estimated to be $$sim$$15 days, on the other hand, the disposal work is $$sim$$26 days after dry up work ($$sim$$30 days), respectively.

Journal Articles

Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

Nakamura, Hiroo; Riccardi, B.*; Loginov, N.*; Ara, Kuniaki*; Burgazzi, L.*; Cevolani, S.*; Dell'Ocro, G.*; Fazio, C.*; Giusti, D.*; Horiike, Hiroshi*; et al.

Journal of Nuclear Materials, 329-333(1), p.202 - 207, 2004/08

 Times Cited Count:14 Percentile:68.23(Materials Science, Multidisciplinary)

International Fusion Materials Irradiation Facility (IFMIF), being developed by EU, JA, RF and US, is a deuteron-lithium (Li) reaction neutron source for fusion materials testing. In the end of 2002, 3 year Key Element technology Phase (KEP) to reduce the key technology risk factors has been completed. This paper describes these KEP tasks results. To evaluate Li flow characteristics, a water and Li flow experiments have been done. To develop Li purification system, evaluation of nitrogen and tritium gettering materials have been done. Conceptual design of remote handling and basic experiment have been donde. In addition, safety analysis and diganostics design have been done. In the presentation, the latest design and future prospects will be also summarized.

JAEA Reports

Study on system integration of robots Operated in nuclear fusion facility and nuclear power plant facilities

Oka, Kiyoshi

JAERI-Research 2004-009, 225 Pages, 2004/07

JAERI-Research-2004-009.pdf:47.47MB

In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environmental and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities.

JAEA Reports

Conceptual design of cesium removal device for ITER NBI maintenance

Oka, Kiyoshi; Shibanuma, Kiyoshi

JAERI-Tech 2003-004, 57 Pages, 2003/03

JAERI-Tech-2003-004.pdf:2.36MB

Cesium is required in order to generate a stable negative ion of hydrogen in an ion source of the neutral beam injector (NBI), which is one of the plasma-heating devices for International Thermonuclear Experimental Reactor (ITER). After long time operation of NBI, the cesium deposits to the insulators supporting the electrode. Due to the deterioration of the insulation resistance, the continuous operation of the NBI will be difficult. In addition, the NBI device is activated by neutron from D-T plasma, so that a periodic removal and cleaning of the cesium on the insulators by remote handling is required. A study of the cesium removal scenario and device is therefore required considering remote handling. In this report, a cesium removal procedure and conceptual design of the cesium removal device using laser ablation technique are studied, and the feasibility of laser ablation is shown.

Journal Articles

Sensor based control test for remote installation of ITER blanket module

Kakudate, Satoshi; Shibanuma, Kiyoshi

Fusion Engineering and Design, 65(1), p.33 - 38, 2003/01

 Times Cited Count:7 Percentile:47.54(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Remote handling systems for ITER

Honda, Tsutomu*; Hattori, Yukiya*; Holloway, C.*; Martin, E.*; Matsumoto, Yasuhiro*; Matsunobu, Takashi*; Suzuki, Toshiyuki*; Tesini, A.*; Baulo, V.*; Haange, R.*; et al.

Fusion Engineering and Design, 63-64, p.507 - 518, 2002/12

 Times Cited Count:16 Percentile:71.53(Nuclear Science & Technology)

The requirement to reduce the construction cost for ITER as compared with the 1998 ITER design,has led to a reduction in the size of the ITER machine and a number of design changes which have an impact on the remote maintenance of ITER. Major components to be considered for remote handling (RH) include the divertor cassettes,shield blanket modules,neutral beamline components, as well as in-port components,which are integrated with the port shield plug such as auxiliary heating equipment,limiters and test blanket modules. The design of the following equipment has been adapted for the smaller machine with reduced access space for the RH equipment: the RH equipment used for the in-vessel RH operationsto be deployed from the casks,the RH equipment that is used to remove the in-port assemblies (port plugs),as well as the remotely operated casks,which can be attached to and removed from vacuum vessel ports by using double -door systems. Defective components are loaded in transfer casks and moved to the hot cell facility by means of a remotely-operated air floatation system attached underneath the cask,where they dock against identical port interfaces and unload the component for remote refurbishment and/or waste storage.

Journal Articles

Status of activities on the lithium target in the key element technology phase in IFMIF

Nakamura, Hiroo; Burgazzi, L.*; Cevolani, S.*; Dell'Ocro, G.*; Fazio, C.*; Giusti, D.*; Horiike, Hiroshi*; Ida, Mizuho*; Kakui, Hideo*; Loginov, N.*; et al.

Journal of Nuclear Materials, 307-311(Part.2), p.1675 - 1679, 2002/12

 Times Cited Count:4 Percentile:30.46(Materials Science, Multidisciplinary)

This paper describes the latest design of the IFMIF liquid Li target system reflecting the KEP results. Future prospects will be also summarized. To handle an averaged heat flux of 1 GW/m2 under a continuous 10 MW D beam deposition, a high-speed Li flow of 20 m/s, a double reducer nozzle and a concaved flow are applied to the target design. Hydraulic characteristics of the Li target design have been validated in a water jet experiment. To obtain a control scenario of the Li loop in an accident of the D beam trip, a transient analysis has been done. To control tritium and impurities in Li, a cold trap and two kinds of hot trap are adopted in Li purification loop. To maintain reliable continuous operation, various diagnostics are attached to the target assembly. To exchange the target assembly and back wall, a remote handling system with a multi axis arm and welding/cutting tool are designed. As an option, design of a replaceable back wall with a mechanical seal is being in progress. In a next phase of IFMIF beyond 2004, a Li test loop will be constructed for engineering validation.

Journal Articles

Status of extened performance tests for blanket remote maintenance in the ITER L6 project

Kakudate, Satoshi; Oka, Kiyoshi; Yoshimi, Takashi*; Hiyama, Masayuki; Taguchi, Ko*; Shibanuma, Kiyoshi; Koizumi, Koichi; Matsumoto, Yasuhiro*; Honda, Tsutomu*; Haange, R.*

Nuclear Fusion, 42(3), p.243 - 246, 2002/03

 Times Cited Count:3 Percentile:11.37(Physics, Fluids & Plasmas)

no abstracts in English

Journal Articles

Scientific visual analysis system required for large-scale numerical simulations

Suzuki, Yoshio; Kishimoto, Yasuaki; NEXT Group

Purazuma, Kaku Yugo Gakkai-Shi, 78(1), p.59 - 69, 2002/01

From the year 2000 to 2001, the computer system located on Naka Fusion Research Establishment, Japan Atomic Energy Research Institute has been replaced. Since the main computer is the scalar parallel computer, which is about 40 times superior to the previous one, the amount of data outputted from the numerical simulations becomes much larger. In this paper, which scientific visual analysis system is more useful to extract the physical phenomena from such a large amount of data is investigated and the performance of the established visual analysis system is estimated.

Journal Articles

Post-irradiation annealing and re-irradiation technique for LWR reactor pressure vessel material

Matsui, Yoshinori; Ide, Hiroshi; Itabashi, Yukio; Kikuchi, Taiji; Ishikawa, Kazuyoshi; Abe, Shinichi; Inoue, Shuichi; Shimizu, Michio; Iwamatsu, Shigemi; Watanabe, Naoki*; et al.

KAERI/GP-195/2002, p.33 - 40, 2002/00

Studies on the irradiation damage of the material of the RPV are inevitable for the LWR. Recently, the researches of annealing effect on the irradiation damage of RPV material were extensively carried out using specimens irradiated in the JMTR of the JAERI. As the next step, an annealing test of irradiated specimens and re-irradiation of annealed specimens were planned. The aim of the test is to evaluate the effect of annealing by comparing the damage of irradiated specimen, its recovery by annealing and the damage after re-irradiation. For the re-irradiation test of this study, JAERI developed a new capsule in which the specimens can be exchanged before and after annealing, and, re-irradiated afterward. The development of the capsule consisted of the design and fabrication of airtight connector for thermocouples and mechanical seal device which was fit to remote handling. Remote operation procedures for handling the radioactive capsule and for exchanging specimens were carefully performed. The results of the re-irradiation proved that the development was technically successful.

Journal Articles

Present status of spallation neutron source development; JAERI/KEK joint project in Japan

Kaminaga, Masanori; Haga, Katsuhiro; Aso, Tomokazu; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Ishikura, Shuichi*; Terada, Atsuhiko*; Kobayashi, Kaoru*; Adachi, Junichi*; Teraoku, Takuji*; et al.

Proceedings of American Nuclear Society Conference "Nuclear Applications in the New Millennium" (AccApp-ADTTA '01) (CD-ROM), 9 Pages, 2002/00

no abstracts in English

Journal Articles

Development of port plug handling tractor for ITER

Ise, Hideo*; Izaki, Makoto*; Oishi, Haruo*; Mori, Seiji*; Ako, Kentaro*; Moriyama, Hisashi*; Kagaya, Hiroaki*; Kobayashi, Masami*; Taguchi, Ko*; Shibanuma, Kiyoshi

FAPIG, (159), p.10 - 14, 2001/11

no abstracts in English

JAEA Reports

Spin-off produced by the fusion research and development

Spin-off Research Committee in Naka Establishment

JAERI-Tech 2001-030, 35 Pages, 2001/03

JAERI-Tech-2001-030.pdf:9.39MB

no abstracts in English

Journal Articles

Mechanical characteristics and position control of vehicle/manipulator for ITER blanket remote maintenance

Kakudate, Satoshi; Oka, Kiyoshi; Yoshimi, Takashi*; Taguchi, Ko*; Nakahira, Masataka; Takeda, Nobukazu; Shibanuma, Kiyoshi; Obara, Kenjiro; Tada, Eisuke; Matsumoto, Yasuhiro*; et al.

Fusion Engineering and Design, 51-52(1-4), p.993 - 999, 2000/11

 Times Cited Count:9 Percentile:55.69(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of in-pipe access welding and cutting tool using YAG laser

Oka, Kiyoshi; Tada, Eisuke; Kimura, Seiichiro*; Ogawa, Tadashi*; Sasaki, Nami*

High-power Lasers in Manufacturing (Proceedings of SPIE Vol.3888), p.702 - 709, 1999/11

no abstracts in English

Journal Articles

Measurement and control system for the ITER remote handling mock-up test

Oka, Kiyoshi; Kakudate, Satoshi; *; *; *; Tada, Eisuke; *; Shibanuma, Kiyoshi

Fusion Technology 1998, 2, p.1701 - 1704, 1998/00

no abstracts in English

Journal Articles

Development of thick wall welding and cutting tools for ITER

Nakahira, Masataka; *; *; Koizumi, Koichi

J. Robot. Mechatron., 10(2), p.116 - 120, 1998/00

no abstracts in English

36 (Records 1-20 displayed on this page)