Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-024, 75 Pages, 2021/01

JAEA-Review-2020-024.pdf:5.43MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance using Laser Resonance Ionization" conducted in FY2019. In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-027, 70 Pages, 2020/01

JAEA-Review-2019-027.pdf:5.18MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance Using Laser Resonance Ionization". In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

Journal Articles

Development of RIMS apparatus for isotope analysis of Calcium nuclear waste materials

Miyabe, Masabumi; Oba, Masaki; Kato, Masaaki; Wakaida, Ikuo; Watanabe, Kazuo

Journal of Nuclear Science and Technology, 43(4), p.305 - 310, 2006/04

 Times Cited Count:13 Percentile:30.08(Nuclear Science & Technology)

We are developing an resonance ionization spectrometric apparatus aiming at an analysis of a radioactive isotope of calcium ($$^{41}$$Ca) in nuclear waste materials. The developed system consists of the reference laser whose frequency was locked on a Doppler-free absorption line of 85Rb and the computer-controlled fringe offset lock system which transfer frequency stability of the reference laser to slave lasers for Ca excitation. With heterodyne spectroscopy and laser induced fluorescence spectroscopy of Ca, it was confirmed that the developed apparatus was suitable for resonance ionization spectrometric analysis.

JAEA Reports

Development of frequency stabilized laser system for long-lived isotope analysis, 2; Simultaneous locking system for multiple diode lasers using Zeeman effect and interferometer

Miyabe, Masabumi; Kato, Masaaki; Oba, Masaki; Wakaida, Ikuo; Watanabe, Kazuo

JAERI-Tech 2004-065, 19 Pages, 2004/10

JAERI-Tech-2004-065.pdf:0.99MB

In nuclear waste materials there are various radionuclides to which standard analytical techniques are difficult to be applied. We are developing an analytical technique where such nuclides are ionized and mass-analyzed using diode laser based multi-step RIMS technique. The diode laser, however, has one drawback, i.e. its oscillation wavelength is readily drifted by acoustic, electric and optical noise, and thus the laser without frequency stabilization is not suitable for the analysis. In this study, we have developed (1) the diode laser whose frequency is stabilized to an intense absorption line of Rb by Zeeman effect and (2) the stabilization system where diode lasers for 3-step ionization of Ca are locked to the Rb-stabilized laser using a Fabry-perot interferometer. Additionally, to evaluate overall frequency stability of the stabilization system, fluctuations in the photoion and fluorescence signals arising from 3-step RIMS of Ca were simultaneously observed.

JAEA Reports

Development of frequency stabilized laser system for long-lived isotope analysis, 1; Development of Littrow configuration extended cavity diode laser

Miyabe, Masabumi; Oda, Koichi*; Oba, Masaki; Kato, Masaaki; Wakaida, Ikuo; Watanabe, Kazuo

JAERI-Tech 2004-064, 33 Pages, 2004/10

JAERI-Tech-2004-064.pdf:1.89MB

In nuclear waste materials there are various radionuclides to which standard analytical techniques are difficult to be applied. We are developing an analytical technique where such nuclides are analyzed using multi-step resonance ionization mass spectrometry. In this study, we have developed an external cavity diode laser applicable to the analysis. The wavelength and output power dependence on injection current and temperature were investigated for various types of laser diodes. Based on the data, we have obtained a suitable condition to operate the ECDL in stable single-mode oscillation, so that a continuous scanning range of about 100 GHz was realized. Additionaly, to evaluate the bandwidth of the developed ECDL, we have performed Doppler-free spectroscopy. The reasonable agreement of the measured isotope shift and HFS splitting with the reported values demonstrated that the developed ECDL is applicable to a precise laser spectroscopy as well as a laser trace analysis.

Journal Articles

Introduction of imaging detection into a time-of-flight mass spectrometer to improve the dynamic range in the isotope ratio measurement

Katayama, Atsushi; Furukawa, Katsutoshi; Watanabe, Kazuo

Bunseki Kagaku, 52(6), p.461 - 467, 2003/06

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

An imaging ion detection system was introduced to a time-of-flight mass spectrometer (TOFMS) in order to increase dynamic range in the isotope ratio measurements. The new detection system utilizes a position sensitive micro channel plate (MCP) with a phosphor plate and a CCD camera which records light spots on the MCP. Mass discriminated ion beams produced by laser resonance ionization were swept on the surface of MCP by a time-depended electric field located in front of the MCP. The resulting light spots were recorded as images by CCD camera. A mass spectrum was obtained from the images. The present method was applied to the isotope analysis of calcium. A dynamic range of more than 5 orders of magnitude was achieved.

Journal Articles

A Laser ion source with a thin ohmic-heating ionizer for the TIARA-ISOL

Koizumi, Mitsuo; Osa, Akihiko; Oshima, Masumi; Sekine, Toshiaki; Wakui, Takashi*; Jin, W.*; Katsuragawa, H.*; Miyatake, Hiroari*; Ishida, Yoshihisa*

Nuclear Instruments and Methods in Physics Research B, 204(1-4), p.359 - 362, 2003/05

 Times Cited Count:7 Percentile:51.56(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Development of a laser ion source with pulsed ion extraction

Koizumi, Mitsuo; Osa, Akihiko; Sekine, Toshiaki; *

Nuclear Instruments and Methods in Physics Research B, 126(1-4), p.100 - 104, 1997/00

 Times Cited Count:8 Percentile:41.84

no abstracts in English

Journal Articles

Laser ion source for the TIARA-ISOL

Koizumi, Mitsuo; Osa, Akihiko; Sekine, Toshiaki

KURRI-TR-418, 0, p.20 - 24, 1996/02

no abstracts in English

Journal Articles

Measurement of metastable population in gadolinium atomic beam by resonance photoionization

Ogura, Koichi; Shibata, Takemasa

Journal of the Physical Society of Japan, 63(3), p.834 - 838, 1994/03

 Times Cited Count:2 Percentile:53.57(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Status report of the TIARA-ISOL in JAERI/Takasaki

Sekine, Toshiaki; Koizumi, Mitsuo; *;

KURRI-TR-377, 0, p.19 - 21, 1993/04

no abstracts in English

11 (Records 1-11 displayed on this page)
  • 1