Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-045, 65 Pages, 2022/01

JAEA-Review-2021-045.pdf:3.41MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm" conducted in FY2020. The present study aims to develop the implementation techniques of the remote sensing method on a robot arm for monitoring the structure status in the reactor and the distribution of nuclear materials by a long-articulated robot arm with controlling and grasping the position and posture of the robot arm hand. In FY 2020, we have conducted fundamental operation check of the robot arm in the simulated environment, prototype construction of telescopic articulated arm and cable storage mechanism, investigation of drive wire specifications, improvement of LIBS probe, prototype construction of microchip

JAEA Reports

Challenge to investigation of fuel debris in RPV by an advanced super dragon articulated robot arm (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-040, 55 Pages, 2021/01

JAEA-Review-2020-040.pdf:3.95MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Challenge to Investigation of Fuel Debris in RPV by an Advanced Super Dragon Articulated Robot Arm" conducted in FY2019.

Journal Articles

Development of dual arm manipulators with remote control system

Tachibana, Mitsuo; Shimada, Taro; Yanagihara, Satoshi

Nihon Kikai Gakkai Dai-8-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu, p.489 - 492, 2002/06

A remote dismantling robot was developed for decommissioning in nuclear facilities. The remote dismantling robot consists of two electrical powered manipulators, end-effectors and a control system. To realize stable dismantling operation remotely, the remote dismantling robot is designed from view point of proper control in coping with different activity conditioning by feedback of image and of force to the control system. The image feedback was considered to obtain accurate positioning of the end-effectors and the force feedback was considered to supply proper force for direct interaction with an object. Motion tests were performed to verify the remote dismantling robot and its control system. As a result, it was confirmed that the remote dismantling activities such as cutting, radioactivity measurement, decontamination were conducted efficiently by using the image feedback and the force feedback.

3 (Records 1-3 displayed on this page)
  • 1