Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(5), p.582 - 594, 2024/05
Times Cited Count:1 Percentile:34.39(Nuclear Science & Technology)Ishida, Shinya; Fukano, Yoshitaka; Tobita, Yoshiharu; Okano, Yasushi
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 8 Pages, 2023/04
Ishida, Shinya; Fukano, Yoshitaka
Nihon Kikai Gakkai Rombunshu (Internet), 88(911), p.21-00304_1 - 21-00304_11, 2022/07
In previous studies, the reliability and validity of the SAS4A code was enhanced by applying Phenomena Identification and Ranking Table (PIRT) approach to the Unprotected Loss of Flow (ULOF). SAS4A code has been developed to analyze the early stage of Core Disruptive Accident (CDA), which is named Initiating Phase (IP). In this study, PIRT approach was applied to Unprotected Transient over Power (UTOP), which was one of the most important and typical events in CDA as well as ULOF. The phenomena were identified by the investigation of UTOP event progression and physical phenomena relating to UTOP were ranked. 8 key phenomena were identified and the differences in ranking between UTOP and ULOF were clarified. The code validation matrix was completed and an SAS4A model, which was not validated in ULOF, was identified and validated. SAS4A code became applicable to various scenarios by using PIRT approach to UTOP and the reliability and validity of SAS4A code were significantly enhanced.
Ishida, Shinya; Kawada, Kenichi; Fukano, Yoshitaka
Mechanical Engineering Journal (Internet), 7(3), p.19-00523_1 - 19-00523_17, 2020/06
The Phenomena Identification and Ranking Table (PIRT) approach was applied to the validation of SAS4A code in order to indicate the reliability of SAS4A code sufficiently and objectively. Based on this approach, issue and objective were clarified, plant design and scenario were defined, FOM and key phenomena were selected, and the code validation test matrix was completed with the results of investigation about analysis models and test cases. The results of the test analysis corresponding to this matrix show that the SAS4A models required for the IP evaluation were sufficiently validated. Furthermore, the validation with this matrix is highly reliable, since this matrix represents the comprehensive validation that also considers the relation between physical phenomena. In this study, the reliability and validity of SAS4A code were significantly enhanced by using PIRT approach to the sufficient level for CDA analyses in SFR.
Ishida, Shinya; Kawada, Kenichi; Fukano, Yoshitaka
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 10 Pages, 2019/05
Core Disruptive Accident (CDA) has been considered as one of the important safety issues in the severe accident evaluation of Sodium-cooled Fast Reactor (SFR), and SAS4A code is developed for Initiating Phase (IP) of CDA. Phenomena Identification and Ranking Table (PIRT) approach was applied to the validation of SAS4A code in order to enhance its reliability in this study. SAS4A was validated in the following steps: (1) selection of the figure of merit (FOM) corresponding to Unprotected Loss Of Flow (ULOF) which is one of the most important and typical events in CDA, (2) identification of the phenomena involved in ULOF, (3) ranking the important phenomena, (4) development of the code validation test matrix, and (5) test analyses for validation corresponding to the test matrix. The reliability and validity of SAS4A code were significantly enhanced by this validation with PIRT approach.
Fukano, Yoshitaka
Journal of Nuclear Engineering and Radiation Science, 5(1), p.011001_1 - 011001_13, 2019/01
Local subassembly faults (LFs) have been considered to be of greater importance in safety evaluation in sodium-cooled fast reactors (SFRs) because fuel elements were generally densely arranged in the subassemblies (SAs) in this type of reactors, and because power densities were higher compared with those in light water reactors. A hypothetical total instantaneous flow blockage at the coolant inlet of an SA (HTIB) gives most severe consequences among a variety of LFs. Although an evaluation on the consequences of HTIB using SAS4A code was performed in the past study, SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in an SFR by this developed SAS4A code clarified that the conclusion in the past study was almost same as that in this study. Furthermore SAS4A code was newly validated using four in-pile experiments which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study. Thus the methodology of HTIB evaluation was established in this study together with the past study and is applicable to HTIB evaluations in other SFRs.
Karahan, A.*; Kawada, Kenichi; Tentner, A.*
Proceedings of 2018 ANS Winter Meeting and Nuclear Technology Expo; Embedded Topical International Topical Meeting on Advances in Thermal Hydraulics (ATH 2018) (USB Flash Drive), 4 Pages, 2018/11
Fukano, Yoshitaka
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 10 Pages, 2017/07
An evaluation on the consequences of a hypothetical total instantaneous flow blockage at the coolant inlet of an SA (HTIB) using SAS4A code was also performed in the past study. SAS4A code was further developed by implementing analytical model of power control system in this study. An evaluation on the consequences of HTIB in Monju by this developed SAS4A code was performed. It was clarified by the analyses considering power control system that the reactor would be safely shut down by the plant protection system triggered by either of 116 percent over power or delayed neutron detector trip signals. Therefore the conclusion in the past study that the consequences of HTIB event would be much less severe than that of unprotected loss-of-flow event was strongly supported by this study. Furthermore SAS4A code was newly validated using an in-pile experiment which simulated HTIB events. The validity of SAS4A application to safety evaluation on the consequence of HTIB was further enhanced in this study.
Suzuki, Toru; Tobita, Yoshiharu; Kawada, Kenichi; Tagami, Hirotaka; Sogabe, Joji; Matsuba, Kenichi; Ito, Kei; Ohshima, Hiroyuki
Nuclear Engineering and Technology, 47(3), p.240 - 252, 2015/04
Times Cited Count:28 Percentile:90.34(Nuclear Science & Technology)Kawada, Kenichi; Ishida, Shinya
no journal, ,
no abstracts in English
Kubota, Ryuzaburo; Suzuki, Toru; Kawada, Kenichi; Kubo, Shigenobu; Yamano, Hidemasa; Koyama, Kazuya*; Moriwaki, Hiroyuki*; Yamada, Yumi*; Shimakawa, Yoshio*
no journal, ,
A new methodology to obtain SAS4A input data of power and reactivity profile more consistent with the core design for various core states was consolidated. Using this methodology, SAS4A analyses on the initiating phase during ULOF and UTOP transients from the full power state and the low power state were performed. This analysis study suggests that the power excursion with prompt criticality leading to large mechanical energy release can be prevented in the initiating phase of the current design for the medium-scale Gen-IV loop-type SFR.
Fukano, Yoshitaka
no journal, ,
no abstracts in English
Kawada, Kenichi; Ishida, Shinya
no journal, ,
no abstracts in English
Fukano, Yoshitaka; Imaizumi, Yuya; Yoshioka, Naonori*; Akahori, Hisashi*
no journal, ,
no abstracts in English
Yoshioka, Naonori*; Fukano, Yoshitaka
no journal, ,
no abstracts in English
Akahori, Hisashi*; Fukano, Yoshitaka
no journal, ,
no abstracts in English