Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

ComparaUve analyses on nuclear charaderistics of water-cooled breeder cores

; Sato, Wakaei*;

JNC-TN9400 2000-037, 87 Pages, 2000/03

JNC-TN9400-2000-037.pdf:3.48MB

ln order to compare the nuclear characteristics of water-cooled bleeder cores with that of LMFBR, MOX fuel cell models are established for boiling and non-boiling LWR, non-boiling HWR and sodium-cooled reactor. Frst, the comarison is made between the heterogeneous cell calculation results by SRAC and those by SLAROM. The results show some differences as for neutron energy spectrum, one-grouped cross section and conversion ratio due to the different grouped cross section library (both are based on JENDL-3.2, though) used for each code, however, the difference is acceptably small for grasping the basic characteristics of the above-mentioned cores. Second, using the SLAROM code, main core parameters such as mean neutron energy, ratio of fast neutron and $$eta$$-value, are analyzed. The comparison between the cores show that softened neutron spectrum by the scattering effect of hydrogen or heavy hydrogen increase the contribution of nuclear reaction (especially for neutron capture reaction rather than fission reaction) in lower energy region comparing with LMFBR. ln order to overcome the effect, tighter lattice than LMFBR is necessary for water-cooled cores to realize the breeding of fissile nuclides. Third, effects of Pu isotopic composition on the breeding ratio are evaluated using SRAC burnup calculation. From the results, it is confirmed that degraded Pu (larger ratio of Pu-240) show the larger breeding ratio. At last, sensitivity analyses are made for k-effective and main reaction ratios. As for k-effective, using a temporary covariance data of JENDL-3.2, uncertainty resulting from the cross sections' error is analyzed for a boiling LWR and a sodium-cooled reactor. The boiling LWR core shows larger sensitivity in lower energy region than the sodium-cooled reactor (especially for the energy region lower than 1kev), And, 18-group analysis that is considered acceptably good for LMFBR analysis, should not be enough for accurate sensitivity estimation of ...

JAEA Reports

Preparation of next generation set of group cross sections; A Task report to the Japan Nuclear Cycle Development Institute)

*

JNC-TJ9400 2000-005, 182 Pages, 2000/03

JNC-TJ9400-2000-005.pdf:4.74MB

The SLAROM code, performing fast reactor cell calculation based on a deterministic methodology, has been revised by adding the universal module PEACO of generating Ultra-fine group neutron spectra. The revised SLAROM, then, was utilized for evaluating reaction rate distributions in ZPPR-13A simulated by a 2-dim RZ homogeneous model, although actually ZPPR-13A composed of radial heterogereous cells. The reaction rate distributions of ZPPR-13A were also calculated by the code MVP, that is a continuous energy Monte Carlo calculation code based on a probabilistic methodology. By coparing both results, it was concluded that the module PEACO has excellent capability for evaluating highly accurate effective cross sections. Also it was proved that the use of a new fine group cross section library set (next generation set), reflecting behavior of cross sections of structural materials, such as Fe and O, in the fast neutron energy region, is indispensable for attaining a better agreement within 1% between both calculation methods. Also, for production of a next generation set of group cross sections, the code NJOY97.V107 was added to the group cross section production system and both front and end processing parts were prepared. This system was utilized to produce the new 70 group JFS-3 library using the evaluated nuclear data library JENDL-3.2. Furthermore, to confirm the capability of this new group cross section production system, the above new JFS-3 library was applied to core performance analysis of ZPPR-9 core with a 2-dim RZ homogeneous model and analysis of heterogeneous cells of ZPPR-9 core by using the deterministic method. Also the analysis using the code MVP was performed. Bycoaparison of both results the following conclusion has been derived; the deterministic method, with the PEACO module for resonance cross sections, contributes to improve accuracy of predicting reaction rate distributions and Na void reactivity in fast reactor cores. And it ...

JAEA Reports

Analysis of measurements for a Uranium-free core experiment at the BFS-2 critical assembly

Hunter

JNC-TN9400 99-049, 74 Pages, 1999/04

JNC-TN9400-99-049.pdf:2.03MB

This document describes a series of calculations that were carried out to model various measurements from the BFS-58-1-I1 experiment. BFS-58-1-I1 was a mock-up of a uranium-free, Pu burning core at BFS-2, a Russian critical assembly operated by IPPE. The experiment measured values of keff, Na void reactivity worth, material sample reactivity worths and reaction rate ratios. The experiments were modelled using a number of different methods. Basic nuclear data was taken from JENDL-3.2, in either 70 or 18 groups. Cross-section data for the various material regions of the assembly were calculated by either SLAROM or CASUP; the heterogeneous structure of the core regions was modelled in these calculations, with 3 different options considered for representing the (essentially 2d) geometry of the assembly components in a 1D cell model. Whole reactor calculations of flux and keff were done using both a diffusion model (CITATION) and a transport model (TWOTRAN2), both using an RZ geometry. Reactivity worths were calculated both directly from differences in keff values and by using the exact perturbation calculations of PERKY and SN-PERT (for CITATION and TWOTRAN2, respectively). Initial calculations included a number of inaccuracies in the assembly representation, a result of communication difficulties between JNC and IPPE; these errors were removed for the final calculations that are presented. Calculations for the experiments have also been carried out in Russia (IPPE) and France (CEA) as part of an international comparison exercise, some of those results are also presented here. The calculated value of keff was 1.1%$$delta$$k/k higher than the measured value, Na void worth C/E values were $$sim$$1.06; these results were considered to be reasonable. (Discrepancies in certain Na void values were probably due to experimental causes, though the efect should be investigated in any future experiments.) several sample worth values were small compared with calculational uncertaint

JAEA Reports

None

; *

PNC-TN9520 94-003, 84 Pages, 1994/06

PNC-TN9520-94-003.pdf:2.39MB

None

JAEA Reports

A Computer code system for actinide transmutation calculation in fast reactors: ABC-SC

*; Mukaiyama, Takehiko; Takano, Hideki; Takizuka, Takakazu

JAERI-M 92-032, 77 Pages, 1992/03

JAERI-M-92-032.pdf:1.95MB

no abstracts in English

5 (Records 1-5 displayed on this page)
  • 1