Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ueki, Taro
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10
A Monte Carlo Solver Solomon has been under development as an object-oriented code written in the C++14 standards. It consists of regular capabilities of criticality safety analysis and a special capability of random media criticality. In the latter capability, Solomon is equipped with a class for the random media modeled by the incomplete randomized Weierstrass function (IRWF). By this modeling, the uncertainty of random media criticality can be evaluated by executing criticality calculations over many IRWF-replicas. However, it is impossible to know beforehand how many IRWF-replicas should be computed. To deal with this issue, a bounded amplification (BA) technique has been newly equipped in Solomon. Applying BA to IRWF, it is possible to reduce the number of IRWF-replicas by more than 95% in terms of the upper limit estimation of neutron effective multiplication factor. Solomon is also equipped with a voxel-overlay (VO). This functionality is shown to be valuable for evaluating the resonance self-shielding effect.
Arai, Yoichi; Watanabe, So; Hasegawa, Kenta; Okamura, Nobuo; Watanabe, Masayuki; Takeda, Keisuke*; Fukumoto, Hiroki*; Ago, Tomohiro*; Hagura, Naoto*; Tsukahara, Takehiko*
Nuclear Instruments and Methods in Physics Research B, 542, p.206 - 213, 2023/09
Li, C.-Y.; Wang, K.*; Uchibori, Akihiro; Okano, Yasushi; Pellegrini, M.*; Erkan, N.*; Takata, Takashi*; Okamoto, Koji*
Applied Sciences (Internet), 13(13), p.7705_1 - 7705_29, 2023/07
Times Cited Count:0 Percentile:0Kadono, Ryosuke*; Hiraishi, Masatoshi*; Okabe, Hirotaka*; Koda, Akihiro*; Ito, Takashi
Journal of Physics; Condensed Matter, 35(28), p.285503_1 - 285503_13, 2023/07
Narita, Hirokazu*; Maeda, Motoki*; Tokoro, Chiharu*; Suzuki, Tomoya*; Tanaka, Mikiya*; Shiwaku, Hideaki; Yaita, Tsuyoshi
RSC Advances (Internet), 13(25), p.17001 - 17007, 2023/06
no abstracts in English
Abe, Tomohisa; Funaki, Hironori; Yoshimura, Kazuya; Shiribiki, Natsu*; Sanada, Yukihisa
JAEA-Data/Code 2023-001, 38 Pages, 2023/05
In this study, commissioned by the Cabinet Office, we conducted a survey on radioactive materials in atmospheric dust in three municipalities (Futaba Town, Okuma Town, and Tomioka Town) in Fukushima Prefecture to contribute to the assessment of internal exposure in the Specified Reconstruction and Revitalization Base (SRRB). Air dust samplers were installed in the targeted municipalities to investigate the atmospheric Cs concentrations and to evaluate internal exposure doses based on measured value. This report summarizes the results of measurements between 2018 and 2021. A database of information on internal exposure dose assessment results based on atmospheric radioactivity concentrations and actual measurements, and meteorological observation data was compiled.
Ito, Ayumi*; Yamashita, Susumu; Tasaki, Yudai; Kakiuchi, Kazuo; Kobayashi, Yoshinao*
Journal of Nuclear Science and Technology, 60(4), p.450 - 459, 2023/04
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2022-072, 116 Pages, 2023/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Challenge of novel hybrid-waste-solidification of mobile nuclei generated in Fukushima Nuclear Power Station and establishment of rational disposal concept and its safety assessment" conducted in FY2021. The present study aims to establish the rational waste disposal concept of a variety of wastes generated in 1F by the novel hybrid-waste-solidification. The phosphate form of ALPS sediment wastes containing Eu, Ce
, Sr
and Cs
were synthesized as well as radioactive
Sr,
Cs and
I which are both
emitters, AREVA sludge and Iodine Calcium apatite were synthesized, and they were processed to the stabilization treatment such as sintering and Spark Plasma ...
Suzuki, Tomoya*; Otsubo, Ukyo*; Ogata, Takeshi*; Shiwaku, Hideaki; Kobayashi, Toru; Yaita, Tsuyoshi; Matsuoka, Mitsuaki*; Murayama, Norihiro*; Narita, Hirokazu*
Separation and Purification Technology, 308, p.122943_1 - 122943_7, 2023/03
Times Cited Count:1 Percentile:20.86(Engineering, Chemical)HNO leaching is used in recycling Pd metal from spent products that primarily contain Ag, and most Pd residues are separated from solutions containing Ag(I). However, a small amount of Pd(II) often remains in these Ag(I) solutions. Therefore, the separation of Pd(II) and Ag(I) in HNO
solutions is essential to promote efficient Pd recycling. In this study, the separation of Pd(II) and Ag(I) in HNO
solutions was investigated using four N-donor-type adsorbents functionalized with amine (R-Amine), iminodiacetic acid (R-IDA), pyridine (R-Py), or bis-picolylamine (R-BPA). R-Amine, R-IDA, and R-Py selectively adsorbed Pd(II) over Ag(I), Cu(II), Ni(II), and Fe(III) from HNO
solutions (0.3-7 M), but R-Amine exhibited a lower Pd adsorption efficiency. In contrast,
90% of Pd(II), Ag(I), and Cu(II) were adsorbed by R-BPA over the entire range of HNO
concentrations. Structural analyses of the adsorbed metal ions using Fourier transform infrared spectroscopy and extended X-ray absorption fine structure spectroscopy revealed the separation mechanisms of the N-donor-type adsorbents. Pd(II) adsorption on R-IDA, R-Py, and R-BPA occurred via Pd(II) coordination of the functional groups (iminodiacetic acid, pyridine, and bis-picolylamine, respectively), whereas that on R-Amine occurred via anion exchange of NO
with [Pd(NO
)
]
. The coordinative adsorption mechanisms resulted in the higher Pd(II) adsorption behaviors of R-IDA, R-Py, and R-BPA. HCl (5.0 M) and thiourea (0.1 M) eluents desorbed 83% of Pd(II) from R-IDA and 95% from R-Py, respectively. R-Py was the most effective Pd(II) adsorbent based on adsorption selectivity and desorption efficiency.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-061, 59 Pages, 2023/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Research on radioactive aerosol control and decontamination at Fukushima Daiichi Nuclear Power Station decommissioning" conducted in FY2021. The present study aims to develop a safe laser decontamination system that simultaneously incorporates an advanced particle detection and characterization system together with aerosol dispersion control in collaboration with the UK researchers. By using the UK partner's fundamental studies related to aerosol and water interface interactions, various methods such as electro-chemical processing of water-mist particles and spray droplets will be applied for effective control of ultra-fine aerosol particle dispersions in a large containment volume.
Sasaki, Yuji; Kaneko, Masashi; Ban, Yasutoshi; Kinoshita, Ryoma; Matsumiya, Masahiko*; Shinoku, Kota*; Shiroishi, Hidenobu*
Analytical Sciences, 9 Pages, 2023/00
Times Cited Count:0 Percentile:0(Chemistry, Analytical)Extraction of Rh from HCl can be performed by NTAamide(C6) (hexahexyl-nitrilotriacetamide) and other related compounds into n-dodecane. We use ion-pair extraction of anionic species of Rh-chloride and protonated extractant. Rh behave as anion in hydrochloric acid and the tertiary nitrogen atom in extractant may be protonated to produce the quaternary amine in acidic condition. From the present work, the maximum distribution ratio of Rh(III) is 16. The D(Rh) values are changeable during preparation of the aqueous solutions because different Rh-Cl-HO complexes are formed in HCl media and show the slow exchange rate between Cl and H
O. Using the UV spectrum, Rh-chloride solution having the peak of spectrum at 504 nm can be extracted effectively, where RhCl
(H
O)
and RhCl
(H
O)
exist mainly from DFT calculation. Stoichiometry of one-one complex of Rh and NTAamide is obtained from slope analysis, and 85 mM of concentrated Rh ion can be extracted.
Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Quaini, A.*; Guneau, C.*
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 79, p.102481_1 - 102481_11, 2022/12
Times Cited Count:0 Percentile:0.01(Thermodynamics)Saito, Tatsuo; Yamazawa, Hiromi*; Mochizuki, Akihito
Journal of Environmental Radioactivity, 255, p.107035_1 - 107035_14, 2022/12
Times Cited Count:0 Percentile:0(Environmental Sciences)The seasonal variation of dissolved U (DU) in Lake Biwa was reproduced by the following model and parameter research. The introduced models are the water-DU mass balance, and the ion exchange between UO and H
on the lakeshore soil. The optimized parameters were the CEC of the lakeshore, TU as the sum of DU and AU (soil adsorbed U), kads and kdes as the first order reaction rate coefficients during rapid soil adsorption and desorption of U, respectively. Tabulated by the chemical equilibria constituting DU and analyzed the contribution of each chemical species, it is shown that the seasonal variation of DU is caused by the seasonal variation of pH. A correction to the ion-exchange equilibrium to shift to first order rate reaction only when the daily AU ratio increased above kads or decreased below kdes, improved the reproducibility of DU measurements and reproduced the delay of the DU peak from the pH peak.
Sun, Haomin; Leblois, Y.*; Gelain, T.*; Porcheron, E.*
Journal of Nuclear Science and Technology, 59(11), p.1356 - 1369, 2022/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In severe accident scenarios of PWR, containment spray can be employed to washout the aerosol of radioactive materials, retaining them in the containment. Therefore, it is crucial to correctly predict the washout efficiency for safety assessment. For a PWR, a high spray coverage ratio ( 84%-95%) is required. However, experimental studies on the washout with such a high coverage ratio in a large vessel are quite limited. To understand such a washout phenomenon for model development, aerosol washout experiments are performed in a large vessel with not only aerosol measurements but also spray droplet characterizations. The spray coverage ratios are experimentally confirmed to be compatible with a real PWR. The washout features are investigated in detail. The model in MELCOR is examined using the measured aerosol removal rate, showing the removal rate tendency against particle diameters being reproduced. Although a significant underestimation occurs for large particles, a satisfactory agreement is obtained for smaller ones (
0.52
m in diameter) corresponding to the minimum removal rate and around.
Simonnet, M.; Sittel, T.*; Weling, P.*; Geist, A.*
Energies (Internet), 15(20), p.7724_1 - 7724_10, 2022/10
Times Cited Count:0 Percentile:0(Energy & Fuels)Porcheron, E.*; Leblois, Y.*; Journeau, C.*; Delacroix, J.*; Molina, D.*; Suteau, C.*; Berlemont, R.*; Bouland, A.*; Lallot, Y.*; Roulet, D.*; et al.
Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR2022) (Internet), 5 Pages, 2022/10
One of the important challenges for the decommissioning of the damaged reactors of the Fukushima Daiichi Nuclear Power Station (1F) is the fuel debris retrieval. The URASOL project, which is undertaken by a French consortium consisting of ONET Technologies, CEA, and IRSN for JAEA/CLADS, is dedicated to acquiring basic scientific data on the generation and characteristics of radioactive aerosols from the thermal or mechanical processing of fuel debris simulant. Heating process undertaken in the VITAE facility simulates some representative conditions of thermal cutting by LASER. For mechanical cutting, the core boring technique is implemented in the FUJISAN facility. Fuel debris simulants have been developed for inactive and active trials. The aerosols are characterized in terms of mass concentration, real time number concentration, mass size distribution, morphology, and chemical properties. The chemical characterization aims at identifying potential radioactive particles released and the associated size distribution, both of which are important information for assessing possible safety and radioprotection measures during the fuel debris retrieval operations at 1F.
Akiyama, Daisuke*; Kusaka, Ryoji; Kumagai, Yuta; Nakada, Masami; Watanabe, Masayuki; Okamoto, Yoshihiro; Nagai, Takayuki; Sato, Nobuaki*; Kirishima, Akira*
Journal of Nuclear Materials, 568, p.153847_1 - 153847_10, 2022/09
Times Cited Count:2 Percentile:66.12(Materials Science, Multidisciplinary)FeUO, CrUO
, and Fe
Cr
UO
are monouranates containing pentavalent U. Even though these compounds have similar crystal structures, their formation conditions and thermal stability are significantly different. To determine the factors causing the difference in thermal stability between FeUO
and CrUO
, their crystal structures were evaluated in detail. A Raman band was observed at 700 cm
in all the samples. This Raman band was derived from the stretching vibration of the O-U-O axis band, indicating that Fe
Cr
UO
was composed of a uranyl-like structure in its lattice regardless of its "x"' value. M
ssbauer measurements indicated that the Fe in FeUO
and Fe
Cr
UO
were trivalent. Furthermore, Fe
Cr
UO
lost its symmetry around Fe
with increasing electron densities around Fe
, as the abundance of Cr increased. These results suggested no significant structural differences between FeUO
and CrUO
. Thermogravimetric measurements for UO
, FeUO
, and CrUO
showed that the temperature at which FeUO
decomposed under an oxidizing condition (approximately 800
C) was significantly lower than the temperature at which the decomposition of CrUO
started (approximately 1250
C). Based on these results, we concluded that the decomposition of FeUO
was triggered by an "in-crystal" redox reaction, i.e., Fe
U
Fe
U
, which would not occur in the CrUO
lattice because Cr
could never be reduced under the investigated condition. Finally, the existence of Cr
in FexCr
UO
effectively suppressed the decomposition of the Fe
Cr
UO
crystal, even at a very low Cr content.
Nakashio, Nobuyuki*; Osugi, Takeshi; Kurosawa, Shigenobu; Ishikawa, Joji; Hemmi, Ko; Iketani, Shotaro; Yokobori, Tomohiko
JAEA-Technology 2022-016, 47 Pages, 2022/08
The Nuclear Science Research Institute (NSRI) of the Japan Atomic Energy Agency (JAEA) started operation of the Advanced Volume Reduction Facilities (AVWF) for production of waste packages for disposal of low-level radioactive solid wastes (LLW). To clarify the operating conditions for homogenization of non-metallic LLW, preliminary tests were carried out using the plasma melting furnace of the non-metal melting unit. The fluidity of molten waste influences homogenization conditions of solidified products. It was clarified that the viscosity, which is determined by the chemical composition and the melting temperature, influence the fluidity of molten waste greatly through previous literature review and the small-scale melting tests. In the preliminary tests, the simulated waste with a cold tracer loaded in 200 L drums were melted. Using the waste chemical components (basicity, iron oxide concentration) as an experimental parameter, the homogeneity of the chemical components of the solidified product was investigated and the homogenization conditions of melting tests were examined. The retention ratio of the tracer in the molten bath was also confirmed. The viscosity of the molten wastes was measured and the correlation with homogeneity was examined. In addition, the technical requirements that should be concerned in advance for future actual operation were discussed.
Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*
ACS Omega (Internet), 7(33), p.29326 - 29336, 2022/08
Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)Yamano, Hidemasa; Okamura, Shigeki*
Transactions of 26th International Conference on Structural Mechanics in Reactor Technology (SMiRT-26) (Internet), 9 Pages, 2022/07
Seismic response analyses were conducted for the pipe with and without the seismic isolation system based on the response waveforms. This study performed a fragility analysis by setting uncertainty parameters on the basis of existing studies. The comparison results showed that the seismic isolation technology is effective for the pipe to prevent cliff-edge effects. In other words, the seismic margin for the seismically isolated plant is 1.2 times larger than that of the non-isolated plant. To evaluate the response reduction effect, this study focused on response coefficients of components as uncertainty parameters, which were specified within a physically possible range. Even if the uncertainty is considered, the HCLPF for the isolated plant is nearly twice as high as the non-isolated plant, namely the response reduction effect is still significant for the isolated plant. Therefore, the isolation technology is effective to avoid cliff-edge effects.