Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wang, Q.*; Ma, N.*; Huang, W.*; Shi, J.*; Luo, X.-T.*; Tomitaka, Sora*; Morooka, Satoshi; Watanabe, Makoto*
Materials Research Letters (Internet), 11(9), p.742 - 748, 2023/08
Yamazaki, Yasuhiro*; Shinomiya, Keisuke*; Okumura, Tadaharu*; Suzuki, Kenji*; Shobu, Takahisa; Nakamura, Yuiga*
Quantum Beam Science (Internet), 7(2), p.14_1 - 14_12, 2023/05
Choi, B.; Nishida, Akemi; Li, Y.; Takada, Tsuyoshi
Earthquake Engineering and Resilience (Internet), 1(4), p.427 - 439, 2022/12
no abstracts in English
Sun, Haomin; Leblois, Y.*; Gelain, T.*; Porcheron, E.*
Journal of Nuclear Science and Technology, 59(11), p.1356 - 1369, 2022/11
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)In severe accident scenarios of PWR, containment spray can be employed to washout the aerosol of radioactive materials, retaining them in the containment. Therefore, it is crucial to correctly predict the washout efficiency for safety assessment. For a PWR, a high spray coverage ratio ( 84%-95%) is required. However, experimental studies on the washout with such a high coverage ratio in a large vessel are quite limited. To understand such a washout phenomenon for model development, aerosol washout experiments are performed in a large vessel with not only aerosol measurements but also spray droplet characterizations. The spray coverage ratios are experimentally confirmed to be compatible with a real PWR. The washout features are investigated in detail. The model in MELCOR is examined using the measured aerosol removal rate, showing the removal rate tendency against particle diameters being reproduced. Although a significant underestimation occurs for large particles, a satisfactory agreement is obtained for smaller ones (
0.52
m in diameter) corresponding to the minimum removal rate and around.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2022-010, 155 Pages, 2022/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying ...
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2020-043, 116 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted in FY2019. In this study, a technique to effectively suppress the scattering of fine particles has been developed, and as a result of experiments, a method of spraying with water mist was found to be an effective and applicable method for improving aerosol removal efficiency and removal rate. As a method of solidifying fuel debris to suppress fine particle scattering during cutting, geopolymer was evaluated for its strength, thermal conductivity and cutting powder. In addition, flow status of geopolymer and the temperature distribution inside RPV covered by geopolymer were simulated.
Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Itoi, Tatsuya*; Takada, Tsuyoshi*
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08
After the 2011 Fukushima accident, the seismic regulation for Nuclear Power Plants (NPP) have been strengthened to take countermeasures against accidents beyond design basis conditions. Therefore, the importance of seismic probabilistic risk assessment has drawn much attention. Uncertainty quantification is a very important issue in the fragility assessment for NPP buildings. In this study, the authors focus on the epistemic uncertainty that can be reduced, and aims to clarify the effects due to different modeling methods of NPP buildings on seismic response results. As the first step of this study, the authors compared the effects on seismic response using two kinds of modeling methods. In order to evaluate the effect, seismic response analysis was performed on two types of building models; the three dimensional finite element model and the conventional lumped mass with sway-rocking model. As the input ground motion, the authors adopted 200 types of simulated seismic ground motions generated by fault rupture models with stochastic seismic source characteristics. For the uncertainty quantification, the authors conducted statistical analyses of the effects on seismic response results of two kinds of modeling methods on building response for each input ground motions, and quantitatively evaluated the uncertainty of response considering different modeling methods. In particular, the difference in modeling methods clearly appeared near the openings of the floors and walls. The authors also report on the knowledge about these three-dimensional effects in seismic response analysis.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2019-037, 90 Pages, 2020/03
JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology to Prevent Scattering of Radioactive Materials in Fuel Debris Retrieval". The objective of the present study is to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles at the time of debris retrieval in Fukushima Daiichi Nuclear Power Station. In addition, as measures to prevent scattering, we will evaluate and develop methods by experiments and simulation as to; (1) a method to suppress the scattering with minimum amount of water utilizing water spray etc., and (2) a method to suppress the scattering by solidifying fuel debris.
Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Takada, Tsuyoshi*
Nihon Jishin Kogakkai Rombunshu (Internet), 20(2), p.2_1 - 2_16, 2020/02
no abstracts in English
Choi, B.; Nishida, Akemi; Li, Y.; Muramatsu, Ken*; Takada, Tsuyoshi*
Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 9 Pages, 2018/07
After the 2011 Fukushima accident, nuclear power plants are required to take countermeasures against accidents beyond design basis conditions. In seismic probabilistic risk assessment (SPRA), uncertainty can be classified as either aleatory uncertainty, which cannot be reduced, or epistemic uncertainty, which can be reduced with additional knowledge and/or information. To improve the reliability of SPRA, efforts should be made to identify and reduce the epistemic uncertainty caused by the lack of knowledge. In this study, we focused on the difference in seismic response by modeling methods, which is related epistemic uncertainty. We conducted a seismic response analysis with two kinds of modeling methods; a three-dimensional finite-element model and a conventional sway-rocking stick model, by using simulated various input ground motions, which is related to aleatory uncertainty. And then we quantified the seismic floor response results of the various input ground motions of each modeling methods. For the uncertainty quantification related to different modeling methods, we further perform a statistical analysis of the floor response results of the nuclear reactor building. Finally, we discussed how to utilize the results from these calculations for the quantification of uncertainty in fragility analysis for SPRA.
Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Takada, Tsuyoshi*
Proceedings of 12th International Conference on Structural Safety & Reliability (ICOSSAR 2017) (USB Flash Drive), p.2206 - 2213, 2017/08
In order to clarify the influence of the difference of modeling method on the variation of the result of seismic response analysis of nuclear facility, seismic response analysis using various simulated input ground motions was carried out and the sensitivity analyses of the variations in seismic response was conducted. In particular, we focused on the maximum acceleration response of reactor building shear walls, the effect of modeling method on response result and the factors of response variation were described and discussed.
Ozawa, Kazumi; Tanigawa, Hiroyasu; Morisada, Yoshiaki*; Fujii, Hidetoshi*
Fusion Engineering and Design, 98-99, p.2054 - 2057, 2015/10
Times Cited Count:1 Percentile:10.04(Nuclear Science & Technology)Reduced activation ferritic/martensitic steel, as typified by F82H, is a promising candidate for structural material of DEMO fusion reactors. To prevent plasma sputtering, tungsten (W) coating was essentially required. This study aims to examine the irradiation effects on hardness and microstructure of vacuum-plasma-spray coated W-F82H steel, with a special emphasis on the impacts of grain-refining induced by frictional stir processing (FSP). It was revealed that the hardness of the VPS-FSP W after ion-irradiation to 5.4 dpa at 800C were not remarkably changed, where bulk W usually exhibited significant irradiation hardening.
Kanari, Moriyasu; Abe, Tetsuya; Kosaku, Yasuo; Tanzawa, Sadamitsu; Hiroki, Seiji
Nihon Genshiryoku Gakkai-Shi, 43(12), p.1228 - 1234, 2001/12
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)no abstracts in English
Ohno, Shuji; Matsuki, Takuo*; ; Miyake, Osamu
JNC TN9520 2000-001, 196 Pages, 2000/01
ASSCOPS (Analysis of Simultaneous Sodium Combustion in Pool and Spray) has been developed for analyses of thermal consequences of sodium leak and fire accidents in LMFBRs. This report presents a description of the computational models, input and output data as the user's manual of ASSCOPS version 2.1. ASSCOPS is an integrated computational code based on the sodium pool fire code SOFIRE II developed by the Atomics International Division of Rockwell International, and on the sodium spray fire code SPRAY developed by the Hanford Engineering Development Laboratory in the U.S. The users of ASSCOPS need to specify the sodium leak conditions (leak flow rate and temperature, etc.), the cell geometries (cell volume, surface area and thickness of structures, etc.), and the atmospheric initial conditions such as gas temperature, pressure, and composition. ASSCOPS calculates the time histories of atmospheric temperature, pressure and of structural temperature.
Kanari, Moriyasu*; Abe, Tetsuya; Enoeda, Mikio; *; *; Shimizu, Katsusuke*; *; Takatsu, Hideyuki
JAERI-Research 98-029, 23 Pages, 1998/06
no abstracts in English
; ; Tanabe, Hiromi; Ohno, Shuji; Miyake, Osamu;
PNC TN9410 97-030, 93 Pages, 1997/04
A sodium fire analysis code, ASSCOPS(Analysis of Simultaneous Sodium Combustions in Pool and Spray) was developed coupling the computer codes of SPRAY-IIIM and SOFIRE-MIl to assess temperature-pressure transients resulting from sodium spray and pool combustions, simultaneously. The validation of ASSCOPS was conducted using the experimental results obtained from sodium spray fire experiments using 21 m vessel and the accuracy of calculated results was discussed. The following results were obtained: (1)Study under inert gas atmosphere. The comparison between analysis and experiment with regard to the pressure and the temperature showed a good agreement. (2)Study under air atmosphere. The comparison between analysis and experiment with regard to the pressure and the temperature also showed a good agreement. (3)Effects of parameter used in evaluating the design of Monju. The peak pressure and temperature obtained by the analysis overestimates the experimental results. From these results, it was concluded that the development and validation of ASSCOPS indicate a improvement on the burning and the heat transfer models in SPRAY-IIIM.
Hidaka, Akihide; Igarashi, Minoru*; Hashimoto, Kazuichiro; *; Sugimoto, Jun
PSI Report Nr. 97-02, p.531 - 544, 1996/06
no abstracts in English
Onozuka, Masanori*; Tsujimura, Seiji*; Toyoda, Masahiko*; Inoue, Masahiko*; Abe, Tetsuya; Murakami, Yoshio
Fusion Technology, 29(1), p.73 - 82, 1996/01
Times Cited Count:9 Percentile:62.44(Nuclear Science & Technology)no abstracts in English
Hidaka, Akihide; Igarashi, Minoru*; Hashimoto, Kazuichiro; ; *; Sugimoto, Jun
Heat and Mass Transfer in Severe Nuclear Reactor Accidents, 0, p.577 - 587, 1996/00
no abstracts in English
Hidaka, Akihide; Igarashi, Minoru*; Hashimoto, Kazuichiro; ; *; Sugimoto, Jun
Journal of Nuclear Science and Technology, 32(10), p.1047 - 1053, 1995/10
Times Cited Count:13 Percentile:76.41(Nuclear Science & Technology)no abstracts in English