Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Annals of Nuclear Energy, 209, p.110783_1 - 110783_7, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, the Japan Atomic Energy Agency (JAEA) has been modifying a critical assembly called "STACY." The first criticality of the modified STACY is scheduled for spring 2024. This paper reports the consideration results of the specifications of the basic core configurations of the modified STACY at the first criticality. We prepared two types of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO fuel rods. The core configurations for the first criticality satisfying these experimental constraints were designed by computational analysis. A cylindrical core configuration with a 1.50 cm grid plate close to the optimum moderation condition needs 253 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered core configurations with 2.54 cm intervals by using doubled pitches of the grid plate. It will need 213 fuel rods for the criticality. In addition, we considered the experimental core configuration with steel/concrete simulant rods to simulate fuel debris conditions. This paper shows these core configurations and their evaluated specifications.
Gunji, Satoshi
Robutsuri No Kenkyu (Internet), (77), 11 Pages, 2024/06
I participated in the international reactor physics conference PHYSOR2024 and summarized the overview and impressions of the conference.
Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.227 - 236, 2024/04
It is considered that a large amount of fuel debris was generated in the TEPCO's Fukushima Dai-ichi Nuclear Power Station accident. In particular, the criticality characteristics of the fuel debris, including concrete components, which are products of molten core-concrete interaction (MCCI), have not been well investigated. In this study, to plan physical simulation in critical experiments at the critical assembly using pseudo fuel debris samples including concrete, we evaluated the sensitivity to the effective multiplication factor of the Si and Ca cross sections in the concrete-simulant sample based on the results of elemental analysis of the prototype. These sensitivity calculations were carried out for each sample loading method and composition. We focused on the energy profile of the sensitivity of the Ca capture reaction and confirmed that the shape of the sensitivity energy profile changed depending on the sample compositions and neutron moderation conditions. We could know the characteristics of each experimental method by clarifying the trends of sensitivity obtained in different experimental cases. It was found that increasing the amount of concrete in the samples and changing the neutron moderation conditions in the experimental core configurations produced similar changes in the shape of the sensitivity energy profile. This result shows the possibility of reproducing the characteristics of MCCI products through practical critical experiments using concrete materials that do not contain fissile materials.
Gunji, Satoshi; Yoshikawa, Tomoki; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, JAEA has been modifying a critical assembly called "STACY". The first criticality of the new STACY is scheduled for spring 2024. This paper reports the consideration results of the core configurations of the new STACY at the first criticality. We prepared two sets of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO fuel rods. In addition, we would like to set the critical water heights for the first criticality at around 95 cm. This is to avoid the reactive effect of the aluminum alloy middle grid plates (Approx. 98 cm high). The core configurations for the first criticality satisfying these conditions were constructed by computational analysis. A square core configuration with the 1.50 cm grid plate that is close to the optimum moderation condition needs 261 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered two core configurations with 1.80 cm intervals by using a checkerboard arrangement. One of them has two regions core configuration with 1.27 and 1.80 cm intervals, and the other has only 1.80 cm intervals. They need 341 and 201 fuel rods for the criticality, respectively. This paper shows these three core configurations and their calculation models.
Gunji, Satoshi; Araki, Shohei; Arakaki, Yu; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10
JAEA has been modifying a critical assembly called STACY from a solution system to a light-water moderated heterogeneous system to validate computation results of criticality characteristics of fuel debris generated in the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. To experimentally simulate the composition and characteristics of fuel debris, we will prepare several grid plates which make particular neutron moderation conditions and a number of rod-shaped concrete and stainless-steel materials. Experiments to evaluate fuel debris's criticality characteristics are scheduled using these devices and materials. This series of STACY experiments are planned to measure the reactivity of fuel debris-simulated samples, measure the critical mass of core configurations containing structural materials such as concrete and stainless steels, and the change in critical mass when their arrangement becomes non-uniform. Furthermore, two divided cores experiments are scheduled that statically simulate fuel debris falling, and also scheduled that subcriticality measurement experiments with partially different neutron moderation conditions. The experimental plans have been considered taking into account some experimental constraints. This paper shows the schedule of these experiments, as well as the computation results of the optimized core configurations and expected results for each experiment.
Gunji, Satoshi; Araki, Shohei; Watanabe, Tomoaki; Fernex, F.*; Leclaire, N.*; Bardelay, A.*; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10
Institut de radioprotection et de sret nuclaire (IRSN) and Japan Atomic Energy Agency (JAEA) have a long-standing partnership in the field of criticality safety. In this collaboration, IRSN and JAEA are planning a joint experiment using the new STACY critical assembly, modified by JAEA. In order to compare the codes (MVP3, MORET6, etc.) and nuclear data (JENDL and JEFF) used by both institutes in the planning of the STACY experiment, benchmark calculations of the Apparatus B and TCA, which are critical assemblies once owned by both institutes, benchmarks from the ICSBEP handbook and the computational model of the new STACY were performed. Including the new STACY calculation model, the calculations include several different neutron moderation conditions and critical water heights. There were slight systematic differences in the calculation results, which may have originated from the processing and/or format of the nuclear data libraries. However, it was found that the calculated results, including the new codes and the new nuclear data, are in good agreement with the experimental values. Therefore, there are no issues to use them for the design of experiments for the new STACY. Furthermore, the impact of the new TSL data included in JENDL-5 on the effective multiplication factor was investigated. Experimental validation for them will be completed by critical experiments of the new STACY by both institutes.
Sono, Hiroki; Izawa, Kazuhiko; Yoritsune, Tsutomu; Suyama, Kenya; Tonoike, Kotaro
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10
Japan Atomic Energy Agency (JAEA) has constructed and operated nine critical assemblies. Of these nine facilities as of 2023, four have already been dismantled, four are under decommissioning, and only STACY is active but under temporally shutdown. STACY is scheduled to restart in 2024 after core modification from a "critical assembly using uranium nitrate solution fuel" to a "general-purpose critical assembly using uranium fuel rods and light-water moderator." The immediate objective of new STACY is to acquire criticality data for fuel debris removal from the damaged reactors in Fukushima-Daiichi Nuclear Power Plant. After the critical experiment program regarding fuel debris, the new STACY is expected to be used for various R&D on next-generation power reactors and others. In addition, the new STACY will serve as an educational and training reactor. These activities are useful not only for Japan but also for international collaborative research and joint use.
Kobayashi, Fuyumi; Fukaya, Hiroyuki; Izawa, Kazuhiko; Kida, Takashi; Sono, Hiroki; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10
In the criticality experiment in the new STACY, pseudo fuel debris samples are used to acquire data for validation of the system used for 1F debris criticality safety assessment. The pseudo fuel debris is a pellet with a diameter of 8 mm and a height of 10 mm containing uranium oxide and structural materials (iron, silicon, zirconium, etc.). The pellets are made by mixing, pressing and sintering uranium dioxide powder and structural materials powder. The UO powder uses the same composition of uranium as the STACY driver fuel rods, in order to reduce the errors in fuel composition. The pseudo fuel debris fabrication devices and analysis equipment are installed at the BECKY in order to evaluate the critical properties of fuel debris with high accuracy in dimension and analysis. This equipment is located in the same laboratory and can quickly respond to experimental needs such as preparation of the pseudo fuel debris and analysis before and after irradiation.
Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10
To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.
Kawaguchi, Maho*; Shiba, Shigeki*; Iwahashi, Daiki*; Okawa, Tsuyoshi*; Gunji, Satoshi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
The Nuclear Regulation Authority (NRA) has been working on an experimental approach for evaluating the criticality of fuel debris produced by the Fukushima Daiichi Nuclear Power Plant (FDNP) accident since 2014, collaborating with the Japan Atomic Energy Agency (JAEA). As part of the approach, JAEA has modified the STAtic experiment Critical facilitY (STACY) for critical experiments to evaluate characteriscs of pseudo-fuel debris. As the preliminary analyses, we verified critical characteristics with major nuclear data libraries for the proposed core configuration patterns. The three-dimensional continuous-energy Monte Carlo neutron and photon transport code, SERPENT-V2.2.0 was used with the latest JENDL, JENDL-5. As a result, larger multiplication factors of JENDL-5 across the modified STACY core configuration patterns were evaluated in comparison to the other libraries. And, H scattering and U fission sensitivity coefficients of JENDL-5 were different from those of the other libraries. Comparing among analyses with those libraries, the updated S(, ) of JENDL-5 might affect the result of critical characteristics in the critical analyses for the modified STACY core configuration.
Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Yoshikawa, Tomoki; Murakami, Takahiko; Kobayashi, Fuyumi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
New experiments simulating fuel debris in the new criticality assembly, STACY, are designed to contribute to the validation of criticality calculations for criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Plant accident. In the new STACY experiment, a two-region core consisting of a driver region and a test region was investigated in order to configure a debris-simulated core with under-moderation condition (lattice pitch 1.27-cm) having the constraint of available fuel rod number. The test region with a 1.27-cm lattice pitch is surrounded by the driver region, in which fuel rods are arranged in a checkerboard pattern on a 1.27-cm lattice plate, with a 1.80-cm lattice pitch. Neutron spectra and sensitivity were calculated by using MCNP6 and ENDF/B-VII. The core which has a 1717 test region with 373 fuel rods is the largest two-region core under the constraint. It was found that the core which has a 1717 test region can simulate the neutron spectra of under-moderation condition in a 1313 region inside the test region with the root-mean square percentage error of less than 5%. It was also confirmed that the sensitivity of Si and Ca (n,) reactions when the concrete simulant, was loaded could be simulated.
Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Murakami, Takahiko; Yoshikawa, Tomoki; Hasegawa, Kenta; Tada, Yuta; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10
To conduct integrated thermal power measurements for the performance test of the modified STACY, we re-analyzed the experimental data measured in the solution fuel STACY using the activation method. We validated its feasibility under the limited number of activation detectors. The re-analyzed results of the activation method by using MVP and PHITS with JENDL-4.0 indicated that the effect of the difference of the position between activation detectors was small enough, and the results agreed with that of the fission product analysis within almost 10%. It is conceivable that the activation method could be adopted instead of the fission product analysis.
Gunji, Satoshi; Araki, Shohei; Suyama, Kenya
Nuclear Science and Engineering, 197(8), p.2017 - 2029, 2023/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The fuel debris generated by the accident at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant is expected to have not only heterogeneous but also nonuniform compositions. Similarly, damaged fuel assemblies remaining in the reactor vessels also have nonuniform configurations due to some missing fuel rods. This non-uniformity may cause changing neutron multiplication factors. The effect of non-uniformity on the neutron multiplication factor is clarified by computations, and the possibility of experimentally validating the computations used for criticality management is being investigated. For this purpose, in this study the criticality effects of several core configurations of a new critical assembly, STACY, of the Japan Atomic Energy Agency with nonuniform arrangements of uranium oxide fuel rods, concrete rods, and stainless-steel rods were studied to confirm benchmarking potential. The difference in these arrangements changed the neutron multiplication factor by more than 1 $. We confirmed that changes in local neutron moderation conditions and the clustering of specific components caused this effect. In addition, the feasibility of benchmark experimental cores with nonuniform arrangements is evaluated. If benchmarking of such experiments could be realized, it would help to validate calculation codes and to develop criticality management methods by machine learning.
Shiba, Shigeki*; Iwahashi, Daiki*; Okawa, Tsuyoshi*; Gunji, Satoshi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
The Nuclear Regulation Authority (NRA) has tackled the experimental approach for determining the criticality of pseudo-fuel debris plausibly simulating actual fuel debris since 2014, collaborating with the Japan Atomic Energy Agency. To elucidate the characteristics of the pseudo-fuel debris, the Japan Atomic Energy Agency modified the STACY (STAtic experiment Critical facilitY) to conduct critical experiments simulating fuel debris. Thus, we proposed three types of modified STACY core configurations. In critical experiments in the modified STACY core, it is important to judge whether the proposed modified STACY core configurations are representative of molten core-concrete interaction debris or not. In this study, we built pseudo-fuel debris models considering a volume ratio of pseudo-fuel debris to moderation (V/V) and calculated uncertainty-based similarity values (C) between the modified STACY core configurations and pseudo-fuel debris models using Tools for Sensitivity and Uncertainty Analysis Methodology Implementation-Indices and Parameters (TSUNAMI-IP) in SCALE 6.2. Consequently, the modified STACY core configuration loading structure rods we proposed completely resulted in high similarity to the pseudo-fuel debris models through V/V values. The main contributions to C values were U , U , and Fe (n,), except for the pseudo-fuel debris model, including extremely high concrete components.
Gunji, Satoshi; Tonoike, Kotaro; Clavel, J.-B.*; Duhamel, I.*
Journal of Nuclear Science and Technology, 58(1), p.51 - 61, 2021/01
Times Cited Count:2 Percentile:20.42(Nuclear Science & Technology)The new critical assembly STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core designs are in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of the new STACY core to measure the criticality characteristics of pseudo fuel debris that simulated Molten Core Concrete Interaction (MCCI) of the fuel debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes of interest and their k sensitivity to their cross sections. In the case of the fuel debris described in this study, especially for the concrete composition, silicon is the nucleus with the highest k sensitivity to the cross section. For this purpose, some parameters of the core configuration, as for example the lattice pitches or the core dimensions, were adjusted using optimization algorithm to find efficiently the optimal core configurations to obtain high sensitivity of silicon capture cross section. Based on these results, realistic series of experiments for fuel debris in the new STACY could be defined to obtain an interesting feedback for the MCCI. This methodology is useful to design other experimental conditions of the new STACY.
Araki, Shohei; Gunji, Satoshi; Tonoike, Kotaro; Kobayashi, Fuyumi; Izawa, Kazuhiko; Ogawa, Kazuhiko
Proceedings of European Research Reactor Conference 2020 (RRFM 2020) (Internet), 7 Pages, 2020/10
Critical experiments of thermal neutron system are still expected to be playing an important role for wide technical issues. The Japan Atomic Energy Agency (JAEA) is renovating the Static Experimental Critical Facility (STACY) to maintain the experimental capability. The new STACY is designed as a general-purpose criticality facility. Its core mainly consists of low enriched UO fuel rods, grid plates, and light water moderator. The first experiment campaign in the new STACY aims to obtain criticality characteristics of fuel debris, which will be used in validation of criticality analysis methods. The designs of the experimental core configurations are in progress.
Izawa, Kazuhiko; Ishii, Junichi; Okubo, Takuya; Ogawa, Kazuhiko; Tonoike, Kotaro
Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09
Japan Atomic Energy Agency, JAEA, is conducting the renewal program of the heterogeneous water moderated critical assembly STACY (Static Experiment Critical Facility) in order to verify the criticality calculation considering fuel debris which have been produced in the accident of Fukushima Daiichi Nuclear Power Station. The first criticality of the new STACY is scheduled at the beginning of 2021. After the first criticality, it is necessary to perform a series of critical experiments with a series of basic experimental core in order to gain a proficiency of operators and grasp the uncertainty that accompanies the result of critical experiments in STACY. Prior to the construction of the new STACY, a series of neutronic calculation was carried out for licensing and planning first series of critical experiment. In this paper, possible core configuration of the basic experimental core and their limitations are discussed and presented.
Gunji, Satoshi; Clavel, J.-B.*; Tonoike, Kotaro; Duhamel, I.*
Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 11 Pages, 2019/09
The new criticality experiments facility STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core design is in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of core configurations of the new STACY to measure the criticality characteristics of pseudo fuel debris focused on Molten Core Concrete Interaction (MCCI) debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes and the keff sensitivity to their cross sections. To obtain maximum sensitivity of Si capture reaction, some parameters of the core configuration, as for example the lattice pitch or the core dimensions, were adjusted using optimization algorithm to research efficiently the optimal core configurations.
Seki, Masakazu; Maekawa, Tomoyuki; Izawa, Kazuhiko; Sono, Hiroki
JAEA-Technology 2017-038, 52 Pages, 2018/03
The Japan Atomic Energy Agency is conducting a reactor modification project of the Static Experiment Critical Facility (STACY). In the modification, STACY is to be converted from a thermal reactor using solution fuel into that using fuel rods and light water moderator. Reactivity of the modified STACY core is controlled by the water level fed in the core tank as well as the present STACY. In order to verify the basic design of the water feed and drain system of the modified STACY, we constructed a mockup test apparatus with almost the same structure and specifications as the modified STACY. In the mockup test, performance checks were pursued regarding limitation of maximum flow of water feeding, adjustment of the flow rate of water feeding, stop of water feeding and others. This report describes the outline and results of the mock-up test of the water feed and drain system of the modified STACY.
Gunji, Satoshi; Tonoike, Kotaro; Izawa, Kazuhiko; Sono, Hiroki
Progress in Nuclear Energy, 101(Part C), p.321 - 328, 2017/11
Times Cited Count:3 Percentile:26.88(Nuclear Science & Technology)Criticality safety of fuel debris, particularly MCCI (Molten-Core-Concrete-Interaction) products, is one of the major safety issues for decommissioning of Fukushima Daiichi Nuclear Power Station. Criticality or subcriticality condition of the fuel debris is still uncertain; its composition, location, neutron moderation, etc. are not yet confirmed. The effectiveness of neutron poison in cooling water is also uncertain for use as a criticality control of fuel debris. A database of computational models is being built by Japan Atomic Energy Agency (JAEA), covering a wide range of possible conditions of such composition, neutron moderation, etc., to facilitate assessing criticality characteristics once fuel debris samples are taken and their conditions are known. The computational models also include uncertainties which are to be clarified by critical experiments. These experiments are planned and will be conducted by JAEA with the modified STACY (STAtic experiment Critical facilitY) and samples to simulate fuel debris compositions. Each of the samples will be cladded by a zircalloy tube whose outer shape is compatible with the fuel rod of STACY and loaded into an array of the fuel rods. This report introduces a study of experimental core configurations to measure the reactivity worth of samples simulating MCCI products. Parameters to be varied in the computation models for the experimental series are:(1) Uranium dioxide with U enrichments of 3, 4, and 5 wt.%; (2) Concrete volume fraction in the samples of 0, 20, 40, 60, and 80%; and (3) Porosity of the samples filled from 0 to 80% where the sample void is filled with water. It is concluded that the measurement is feasible in both under- and over-moderated conditions. Additionally, the required amount of samples was estimated.