Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Miwa, Yukio; Tsukada, Takashi
Proceedings of 8th Japan-China Symposium on Materials for Advanced Energy Systems and Fission & Fusion Engineering, p.161 - 168, 2004/10
Irradiation assisted stress corrosion cracking (IASCC) is one of the environmental degradation problems of in-core structural materials for light water reactors. The effects of irradiation and water temperatures on the IASCC were studied using type 316(LN) stainless steels irradiated at 333-673 K to 1.1-16 dpa. IASCC did not occur at 513 K in oxygenated water for specimens irradiated below 573 K to 1.1-16 dpa, but IASCC occurred above 533 K in oxygenated water for all specimens. The irradiation temperature had a strong influence on IASCC susceptibility at 513 K in oxygenated water, so that the irradiation temperature dependence was compared with the temperature dependence of other radiation-induced phenomena.
Nakano, Junichi; Miwa, Yukio; Koya, Toshio; Tsukada, Takashi
Journal of Nuclear Materials, 329-333(Part1), p.643 - 647, 2004/08
Times Cited Count:9 Percentile:52.01(Materials Science, Multidisciplinary)To study effects of minor elements on the irradiation assisted stress corrosion cracking (IASCC), high purity Type 304 and 316 stainless steels (SSs) were fabricated and added minor elements, Si or C. After neutron irradiation to 3.510n/m (E1MeV), the slow strain rate tests (SSRT) for the irradiated specimens was conducted in oxygeneted high purity water at 561 K. Fracture surface of the specimens was examined using the scanning electron microscope (SEM) after the SSRT. Fraction of intergranular stress corrosion cracking (IGSCC) on the fracture surface after the SSRT increased with netron fluence. Suppression of irradiation hardening and increase of peiod to SCC fracture as benefitical effects of the additional elements, Si or Mo, were not observed obviously. In high purity SS added C, fraction of IGSCC was the smallest in the all SSs, although irraidiation hardening level was the largest in the all SSs. Addition of C suppressed the susceptibility to IGSCC.
Nakano, Junichi; Tsukada, Takashi; Tsuji, Hirokazu; Terakado, Shogo; Koya, Toshio; Endo, Shinya
JAERI-Tech 2003-092, 54 Pages, 2004/01
Irradiation assisted stress corrosion cracking (IASCC) is a degradation phenomenon caused by synergy of neutron radiation, aqueous environment and stress on in-core materials, and it is an important issue in accordance with increase of aged light water reactors. Isolating crack initiation stage from crack growth stage is very useful for the evaluation of the IASCC behavior. Hence facility for in-situ observation during slow strain rate test (SSRT) for irradiated material was developed. As performance demonstrations of the facility, tensile test with in-situ observation and SSRT without observation were carried out using unirradiated type 304 stainless steel in 561 K water at 9 MPa. The following were confirmed from the results. (1) Handling, observation and recording of specimen can be operated using manipulators in the hot cell. (2) In-situ observation can be performed in pressurized high temperature water and flat sheet type specimen is suitable for the in-situ observation. (3) Test condition can be kept constantly and data can be obtained automatically for long test period.
Nakano, Junichi; Miwa, Yukio; Tsukada, Takashi; Kikuchi, Masahiko; Kita, Satoshi; Nemoto, Yoshiyuki; Tsuji, Hirokazu; Jitsukawa, Shiro
Journal of Nuclear Materials, 307-311(Part2), p.1568 - 1572, 2002/12
Times Cited Count:13 Percentile:62.70(Materials Science, Multidisciplinary)Type 316LN stainless steel of the international thermonuclear experimental reactor (ITER) Grade (316LN-IG SS) is being considered for the first wall/ blanket component. Hot isostatic pressing (HIP) technique is expected for the fabrication of module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316LN-IG SS, tensile tests in vacuum and slow strain rate tests (SSRT) in high temperature water were performed. Specimen with the HIPed joint shows no deterioration of the tensile strength and susceptibility to SCC in oxygenated water. Thermally sensitized specimen with the HIPed joint was low susceptible to SCC in creviced environment. It is concluded that the strength at joint location is as high as that at the base alloy and the joint interface appears integrity.
; Nakajima, Hajime; ; ; Kondo, Tatsuo
Corrosion Fatigue; Mechanics, Metallurgy, Electrochemistry and Engineering, p.256 - 286, 1983/00
no abstracts in English
; Nakajima, Hajime; Kondo, Tatsuo;
Zairyo, 31(346), p.703 - 709, 1982/00
no abstracts in English