Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takeda, Takeshi
JAEA-Data/Code 2024-014, 76 Pages, 2024/12
An experiment denoted as SB-PV-03 was conducted on November 19, 2002 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-03 simulated a 0.2% pressure vessel bottom small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system of emergency core cooling system (ECCS) and noncondensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. Secondary-side depressurization of both steam generators (SGs) as an accident management (AM) action to achieve the depressurization rate of 55 K/h in the primary system was initiated 10 min after the generation of a safety injection signal, and continued afterwards. Auxiliary feedwater injection into the secondary-side of both SGs was started for 30 min with some delay after the onset of the AM action. The AM action was effective on the primary depressurization until the ACC tanks began to discharge nitrogen gas into the primary system. The core liquid level recovered in oscillative manner because of intermittent coolant injection from the ACC system into both cold legs. Therefore, the core liquid level remained at a small drop. The pressure difference between the primary and SG secondary sides became larger after nitrogen gas ingress. Core uncovery occurred by core boil-off during reflux condensation in the SG U-tubes under nitrogen gas influx. When the maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 908 K, the core power was automatically reduced to protect the LSTF core. After the automatic core power reduction, coolant injection from low pressure injection (LPI) system of ECCS into both cold legs led to the whole core quench. After the continuous core cooling was confirmed through the actuation of the LPI system, the experiment was terminated.
Takeda, Takeshi
JAEA-Data/Code 2021-006, 61 Pages, 2021/04
An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.
Takeda, Takeshi
JAEA-Data/Code 2018-003, 60 Pages, 2018/03
Experiment SB-PV-07 was conducted on June 9, 2005 using LSTF. Experiment simulated 1% pressure vessel top small-break LOCA in PWR under total failure of HPI system and nitrogen gas inflow to primary system from ACC tanks. Liquid level in upper-head was found to control break flow rate. Coolant was started to manually inject from HPI system into cold legs as first accident management (AM) action when maximum core exit temperature reached 623 K. Fuel rod surface temperature largely increased because of late and slow response of core exit temperature. SG secondary-side depressurization was initiated by fully opening relief valves as second AM action when primary pressure decreased to 4 MPa. However, second AM action was not effective on primary depressurization until SG secondary-side pressure decreased to primary pressure. Pressure difference became larger between primary and SG secondary sides after ACC tanks started to discharge nitrogen gas.
Takeda, Takeshi
JAEA-Data/Code 2015-022, 58 Pages, 2016/01
The SB-HL-12 test simulated PWR 1% hot leg SBLOCA under assumptions of total failure of HPI system and non-condensable gas (nitrogen gas) inflow. SG depressurization by fully opening relief valves in both SGs as AM action was initiated immediately after maximum fuel rod surface temperature reached 600 K. After AM action due to first core uncovery by core boil-off, the primary pressure decreased, causing core mixture level swell. The fuel rod surface temperature then increased up to 635 K. Second core uncovery by core boil-off took place before LSC induced by steam condensation on ACC coolant injected into cold legs. The core liquid level recovered rapidly after LSC. The fuel rod surface temperature then increased up to 696 K. The pressure difference became larger between the primary and SG secondary sides after nitrogen gas inflow. Third core uncovery by core boil-off occurred during reflux condensation. The maximum fuel rod surface temperature exceeded 908 K.
Takeda, Takeshi; Onuki, Akira*; Nishi, Hiroaki*
Journal of Energy and Power Engineering, 9(5), p.426 - 442, 2015/05
Takeda, Takeshi; Onuki, Akira*; Nishi, Hiroaki*
Proceedings of 10th International Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS-10) (USB Flash Drive), 13 Pages, 2014/12
Takeda, Takeshi
JAEA-Data/Code 2014-021, 59 Pages, 2014/11
Experiment SB-CL-32 was conducted on May 28, 1996 using the LSTF. The experiment SB-CL-32 simulated 1% cold leg small-break LOCA in PWR under assumptions of total failure of HPI system and no inflow of non-condensable gas from ACC tanks. Secondary-side depressurization of both SGs as AM action to achieve the depressurization rate of 200 K/h in the primary system was initiated 10 min after break. Core uncovery started with liquid level drop in crossover leg downflow-side. The core liquid level recovered rapidly after first LSC. The surface temperature of simulated fuel rod then increased up to 669 K. Core uncovery took place before second LSC induced by steam condensation on ACC coolant. The core liquid level recovered rapidly after second LSC. The maximum fuel rod surface temperature was 772 K. The continuous core cooling was confirmed because of coolant injection by LPI system. This report summarizes the test procedures, conditions and major observation.
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
Journal of Nuclear Science and Technology, 43(1), p.55 - 64, 2006/01
Times Cited Count:10 Percentile:56.18(Nuclear Science & Technology)Effects of non-condensable gas from the accumulator tanks on secondary depressurization, as one of accident management (AM) measures in case of high pressure injection system failure, are studied at the ROSA-V/LSTF experiments simulating a ten instrument-tube break LOCA at the PWR vessel bottom. In an experiment with no gas inflow, the secondary depressurization at -55 K/h initiated by SI signal with 10 minutes delay succeeded in the LPI actuation. On the other hand, the gas inflow in another experiment degraded the primary depressurization and resulted in core uncovery before the LPI start. The third experiment with rapid secondary depressurization and continuous auxiliary feedwater supply, however, showed a possibility of long-term core cooling by the LPI actuation. RELAP5/MOD3 code analyses well predicted these experiment results and clarified that condensation heat transfer was largely degraded by the gas in the U-tubes. In addition, a primary pressure - coolant mass map was found to be useful for indication of key plant parameters of AM measures.
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
Nihon Kikai Gakkai 2005-Nendo Nenji Taikai Koen Rombunshu, Vol.3, p.223 - 224, 2005/09
Shown below are experimental results on characteristics of reactor instrumentations including a coolant mass tracking method and core exit thermocouples (CETs) which are necessary to precise operator actions for accident management (AM) during a loss-of-coolant accident (LOCA) at a pressurized water reactor (PWR). The experiments at the ROSA-V/LSTF facility of the Japan Atomic Energy Research Institute simulated small break LOCAs at the PWR vessel bottom and clarified effects of secondary depressurization as one of the AM measures in case of high pressure injection system failure and non-condensable gas inflow from the accumulator injection system. It was shown that the coolant mass tracking method based on three types of water level instruments could detect most of the primary coolant mass change between the initial state and core-heatup starting condition. The CET characteristics to detect the core heatup conditions were significantly degraded by the condensed water fall-back during the secondary depressurization action.
Takeda, Takeshi; Asaka, Hideaki; Suzuki, Mitsuhiro; Nakamura, Hideo
Proceedings of 13th International Conference on Nuclear Engineering (ICONE-13) (CD-ROM), 8 Pages, 2005/05
no abstracts in English
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
Proceedings of 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety (NUTHOS-6) (CD-ROM), 14 Pages, 2004/10
no abstracts in English
ROSA-V Group
JAERI-Tech 2003-037, 479 Pages, 2003/03
no abstracts in English
Asaka, Hideaki; Anoda, Yoshinari; Kukita, Yutaka*;
Journal of Nuclear Science and Technology, 35(12), p.905 - 915, 1998/12
Times Cited Count:16 Percentile:74.21(Nuclear Science & Technology)no abstracts in English
Yonomoto, Taisuke; ; Kukita, Yutaka; L.S.Ghan*; R.R.Schultz*
Nuclear Technology, 119, p.112 - 122, 1997/08
Times Cited Count:29 Percentile:87.94(Nuclear Science & Technology)no abstracts in English
Yonomoto, Taisuke; ; Kukita, Yutaka
Journal of Nuclear Science and Technology, 34(6), p.571 - 581, 1997/06
Times Cited Count:5 Percentile:42.44(Nuclear Science & Technology)no abstracts in English
Yonomoto, Taisuke; ; ; Anoda, Yoshinari; Kukita, Yutaka*
Eighth Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-8), 1, p.535 - 542, 1997/00
no abstracts in English
Yonomoto, Taisuke
JAERI-Research 96-024, 154 Pages, 1996/05
no abstracts in English
Onuki, Akira; ; Murao, Yoshio
Journal of Nuclear Science and Technology, 32(3), p.245 - 256, 1995/03
Times Cited Count:1 Percentile:17.36(Nuclear Science & Technology)no abstracts in English
; Kukita, Yutaka
Journal of Nuclear Science and Technology, 32(2), p.101 - 110, 1995/02
Times Cited Count:18 Percentile:82.91(Nuclear Science & Technology)no abstracts in English
Anoda, Yoshinari; Kukita, Yutaka; Yonomoto, Taisuke; ; Nakamura, Hideo; Kumamaru, Hiroshige; T.J.Boucher*; M.G.Ortiz*; R.A.Shaw*; R.R.Schultz*
Nihon Kikai Gakkai Dai-72-Ki Tsujo Sokai Koenkai Koen Rombunshu, III, 0, p.413 - 414, 1995/00
no abstracts in English