Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 71

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Direction of future safety research to be conducted by Sector of Nuclear Safety Research and Emergency Preparedness (FY 2021 Edition)

Planning and Co-ordination Office, Sector of Nuclear Safety Research and Emergency Preparedness

JAEA-Review 2021-019, 58 Pages, 2021/11

JAEA-Review-2021-019.pdf:2.26MB

In response to the directives of the 4th medium-to-long-term objectives, Japan Atomic Energy Agency will formulate the 4th medium-to-long-term plan and run its operation according to the plan from the fiscal year 2022. Consequently, the Sector of Nuclear Safety Research and Emergency Preparedness has reviewed the strategies of the safety research for contributing to the demand, "the continuous improvement of nuclear safety and the effectiveness of nuclear disaster prevention". It was also discussed how to proceed the safety research over the medium-to-long-term plan period based on the proposed new strategies. From the viewpoint of developing human resources and maintaining research capabilities in the sector, discussion was made on measures to pass on the knowledge and skills of senior and mid-career researchers to young researchers. The main elements of the proposed strategies are: (1) to efficiently and effectively develop both problem-solving research and advanced or leading research, considering the importance and needs on the nuclear safety and corresponding to regulatory trends and introduction of new technologies, (2) to produce research results of high quality for social implementation, including proactive proposal of measures for enhancing rationality of nuclear safety and regulation by utilizing risk information, and (3) to promote development of human resources and maintenance of technological base through challenging new research subjects. This report summarizes results of the discussion on the medium-to-long-term safety research strategies and the research plans based on the proposed strategies.

Journal Articles

Effect of B$$_{4}$$C absorber material on melt progression and chemical forms of iodine or cesium under severe accident conditions

Hidaka, Akihide

Insights Concerning the Fukushima Daiichi Nuclear Accident, 4; Endeavors by Scientists, p.341 - 356, 2021/10

Journal Articles

Thermal-hydraulics to risk assessment; Roles of thermal-hydraulics simulation to risk assessment

Maruyama, Yu; Yoshida, Kazuo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(7), p.517 - 522, 2021/07

no abstracts in English

Journal Articles

Refinement of source term and atmospheric dispersion simulations of radionuclides during the Fukushima Daiichi Nuclear Power Station accident

Terada, Hiroaki; Nagai, Haruyasu; Tsuzuki, Katsunori; Furuno, Akiko; Kadowaki, Masanao; Kakefuda, Toyokazu*

Journal of Environmental Radioactivity, 213, p.106104_1 - 106104_13, 2020/03

 Times Cited Count:19 Percentile:95.03(Environmental Sciences)

In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station accident in Japan, the spatial and temporal distribution of radioactive materials in the environment is necessary to be reconstructed by computer simulations with the atmospheric transport, dispersion and deposition model (ATDM) and source term of radioactive materials discharged into the atmosphere is essential. In this study, we carried out refinement of the source term and improvement of ATDM simulation by using an optimization method based on Bayesian inference with various measurements (air concentration, surface deposition, and fallout). We also constructed the spatiotemporal distribution of some major radionuclides in the air and on the surface (optimized dispersion database) by using the optimized release rates and ATDM simulations which is used for the comprehensive dose assessment by coupling with the behavioral pattern of evacuees from the accident.

Journal Articles

Formation mechanisms of insoluble Cs particles observed in Kanto district four days after Fukushima Daiichi NPP accident

Hidaka, Akihide

Journal of Nuclear Science and Technology, 56(9-10), p.831 - 841, 2019/09

 Times Cited Count:3 Percentile:57.07(Nuclear Science & Technology)

The insoluble Cs particles (Type A) were firstly observed in Tsukuba-city on the morning of March 15. The particles have been considered to be generated in RPV of Unit 2 by evaporation/condensation based on the measured $$^{134}$$Cs/$$^{137}$$Cs ratio and the core temperatures of each unit. However, the Type A particles with smaller diameter than the Type B particles of Unit 1 origin, are covered by almost pure silicate glass and have a trace of the quenching. This indicates that the particles could have been generated due to the melting of the HEPA filter in SGTS by the fire of H$$_{2}$$ detonation at Unit 3, and atomization followed by quenching of the molten materials by air blast of the explosion. Although the particles were mostly dispersed to the sea because of the wind direction, some of them deposited onto the lower elevation of R/B at Unit 3, could have been subsequently re-suspended and released into the environment, by the steam flow in the R/B caused by restart of the Unit 3 core cooling water injection at 2:30 of March 15.

Journal Articles

Analysis for the accident at unit 1 of the Fukushima Daiichi NPS with THALES2/KICHE code in BSAF2 project

Tamaki, Hitoshi; Ishikawa, Jun; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.72 - 82, 2019/08

JAEA participated in the OECD/NEA BSAF2 project with our integrated severe accident analysis code, THALES2/KICHE, in order to analyze and discuss the accident progression and source term of the accident at the Fukushima Daiichi NPS. One of important characteristics of THALES2/KICHE code is that it has the capability of predicting iodine chemistry based on reaction kinetics in the aqueous phase. JAEA performed the three week analysis for the accident at unit 1 on the basis of the boundary conditions and assumptions proposed by the BSAF2 project and our own assumptions. In addition to the failure of the drywell, it was assumed in the present analysis that continuous leakage occurred through the containment venting line due to incomplete closing of valves in the line. The releases of fission products, especially for iodine and cesium, within three weeks after the earthquake were estimated to be approximately 6% and 1% of the initial inventory, respectively.

Journal Articles

Analysis for the accident at unit 2 of the Fukushima Daiichi NPS with THALES2/KICHE code in BSAF2 project

Tamaki, Hitoshi; Ishikawa, Jun; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.100 - 111, 2019/08

JAEA participated in the OECD/NEA BSAF2 project with our integrated severe accident analysis code, THALES2/KICHE, in order to analyze and discuss the accident progression and source term of the accident at the Fukushima Daiichi NPS. One of important characteristics of THALES2/KICHE code is that it has the capability of predicting iodine chemistry based on reaction kinetics in the aqueous phase. JAEA performed the three week analysis for the accident at unit 2 on the basis of the boundary conditions and assumptions proposed by the BSAF2 project and our own assumptions. One of focusing points in the BSAF2 project was the trend of measured data of reactor vessel from 20:00 March 14 to 02:00 March 15. An assumption was made that the lower part of the suppression chamber failed to form a water leakage path. The released iodine and cesium within three weeks after the earthquake were predicted to be approximately 3% and 0.1% of the initial inventory, respectively.

Journal Articles

Analysis for the accident at Unit 3 of the Fukushima Daiichi NPS with THALES2/KICHE Code in BSAF2 project

Ishikawa, Jun; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.536 - 547, 2019/08

Journal Articles

Estimation of environmental releases of radioactive materials

Chino, Masamichi*; Nagai, Haruyasu

Environmental Contamination from the Fukushima Nuclear Disaster; Dispersion, Monitoring, Mitigation and Lessons Learned, p.50 - 61, 2019/00

 Times Cited Count:4 Percentile:91.41

Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station accident and their atmospheric dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. We have estimated the atmospheric releases during the accident by comparing measurements with calculations by atmospheric deposition model. UNSCEAR compared several estimated source terms and used our source term for estimating levels of radioactive material in the terrestrial environment and doses to the public. To improve our source term, we recently made detailed source term estimation by using additional monitoring data and WSPEEDI including new deposition scheme.

Journal Articles

Sensitivity analysis of source term in the accident of Fukushima Dai-ichi Nuclear Power Station Unit 1 using THALES2/KICHE

Tamaki, Hitoshi; Ishikawa, Jun; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of Asian Symposium on Risk Assessment and Management 2018 (ASRAM 2018) (USB Flash Drive), 6 Pages, 2018/10

In the accidents at Fukushima Dai-ichi Nuclear Power Station, Tsunami caused loss of electric power supply and this event led to core melt and failure of Containment vessel. Finally, fission products were released to the environment. Currently, the activities for understanding of accident progressions are carried out based on the measured data during the accident, accident progression analysis using integrated severe accident analysis codes and investigation of inside of reactor buildings and containment vessels. On the other hand, there are some research activities with combination of accident progression analysis and accident consequence analysis. In Japan Atomic Energy Agency (JAEA), the research project of combination of these analyses using the computational simulation codes has been started. The results obtained from the combination analysis are expected to have broad width of uncertainty because of many uncertainty factors in this combined analysis. In order to perform the analysis efficiently, sensitivity analysis for failure location on containment vessel and its failure size were carried out by THALES2/KICHE developed by JAEA at first. This analysis was performed on unit 1, since it was the first plant to release radioactive materials to the environment during the accident and its consequence had no effect from other plants. The authors focused on the failure of containment vessel head flange, penetration seal and vacuum breaker pipe, and possibility of partial open of vent valve based on the investigations of reactor building inside performed by TEPCO. This paper presents the results obtained from this sensitivity analysis.

Journal Articles

Evaluation of chemical speciation of iodine and cesium considering fission product chemistry in reactor coolant system

Ishikawa, Jun; Zheng, X.; Shiotsu, Hiroyuki; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of Asian Symposium on Risk Assessment and Management 2018 (ASRAM 2018) (USB Flash Drive), 6 Pages, 2018/10

Journal Articles

Updating source term and atmospheric dispersion simulations for the dose reconstruction in Fukushima Daiichi Nuclear Power Station accident

Nagai, Haruyasu; Terada, Hiroaki; Tsuzuki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku

EPJ Web of Conferences, 153, p.08012_1 - 08012_7, 2017/09

 Times Cited Count:2 Percentile:85.61

In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, the spatiotemporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials and modifying the atmospheric dispersion model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. The ATDM simulation was improved to use a new meteorological model and sophisticated deposition scheme. Although the improved ATDM simulations reproduced well the $$^{137}$$Cs deposition pattern in the eastern Japan scale, the reproducibility of deposition pattern was decreased in the vicinity of FDNPS. This result indicated the necessity of further refinement of the source term by optimization to the improved ATDM simulations.

Journal Articles

Release behavior of Cs and its chemical form during late phase of Fukushima Daiichi Nuclear Power Plant accident

Hidaka, Akihide; Yokoyama, Hiroya

Proceedings of Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2017 (AWC 2017) (USB Flash Drive), p.29 - 42, 2017/09

no abstracts in English

Journal Articles

Examination of $$^{131}$$I and $$^{137}$$Cs releases during late phase of Fukushima Daiichi NPP accident by using $$^{131}$$I/$$^{137}$$Cs ratio of source terms evaluated reversely by WSPEEDI code with environmental monitoring data

Hidaka, Akihide; Yokoyama, Hiroya

Journal of Nuclear Science and Technology, 54(8), p.819 - 829, 2017/08

AA2016-0500.pdf:0.44MB

 Times Cited Count:9 Percentile:75.2(Nuclear Science & Technology)

To clarify what happened during the Fukushima accident, the phenomena within RPV and the discussion of ties with the environmental monitoring are very important. However, the previous study has not necessarily advanced until the present that passed almost six years from the accident. The present study investigated $$^{131}$$I and $$^{137}$$Cs release behaviors during the late phase of the accident based on $$^{131}$$I/$$^{137}$$Cs ratio of the source terms that were recently evaluated backward by WSPEEDI code based on environmental monitoring data. The $$^{131}$$I release from the contaminated water in the basement of 1F2 and 1F3 reactor buildings was evaluated to be about 10% of $$^{131}$$I source term. The increase in $$^{137}$$Cs release from March 21 to 23 and from March 30 to 31 could be explained by the release of CsBO$$_{2}$$ which is formed as a result of chemical reactions of Cs with B$$_{4}$$C due to re-ascension of the core temperature caused by slight shortage of the core cooling water.

Journal Articles

Challenges for enhancing Fukushima environmental resilience, 2; Features of radionuclide release and deposition with accident progress

Saito, Kimiaki; Nagai, Haruyasu; Kinase, Sakae; Takemiya, Hiroshi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 59(6), p.40 - 44, 2017/06

no abstracts in English

Journal Articles

Effectiveness evaluation of filtered containment venting system using THALES-2

Kondo, Masahiro*; Yoshimoto, Tatsuya*; Ishikawa, Jun; Okamoto, Koji*

Hozengaku, 15(4), p.79 - 85, 2017/01

no abstracts in English

Journal Articles

Formation and release of molecular iodine in aqueous phase chemistry during severe accident with seawater injection

Kido, Kentaro; Hata, Kuniki; Maruyama, Yu; Nishiyama, Yutaka; Hoshi, Harutaka*

NEA/CSNI/R(2016)5 (Internet), p.204 - 212, 2016/05

Journal Articles

An Integrated approach to source term uncertainty and sensitivity analysis for nuclear reactor severe accidents

Zheng, X.; Ito, Hiroto; Tamaki, Hitoshi; Maruyama, Yu

Journal of Nuclear Science and Technology, 53(3), p.333 - 344, 2016/03

AA2014-0796.pdf:0.84MB

 Times Cited Count:9 Percentile:75.69(Nuclear Science & Technology)

Journal Articles

Analysis for progression of accident at Fukushima Dai-ichi Nuclear Power Station with THALES2 code

Matsumoto, Toshinori; Ishikawa, Jun; Maruyama, Yu

Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16) (USB Flash Drive), p.4033 - 4043, 2015/08

71 (Records 1-20 displayed on this page)