Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Minehara, Eisuke; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobuhiro; Nishimori, Nobuyuki; Iijima, Hokuto; Nishitani, Tomohiro; Kimura, Hideaki*; Oguri, Daiichiro*; et al.
Proceedings of 13th International Conference on Nuclear Engineering (ICONE-13) (CD-ROM), 10 Pages, 2005/05
The JAERI FEL has recently discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high-efficiency, one gigawatt high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear industry, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand-alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to decommission the nuclear power plants, and to prevent stress-corrosion cracking in nuclear industry and roadmap for the industrial FELs, the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience, the new, highly-efficient, high-power, and ultra fast pulse lasing mode, and the energy-recovery geometry.
Minehara, Eisuke
Nuclear Instruments and Methods in Physics Research A, 483(1-2), p.8 - 13, 2002/05
Times Cited Count:21 Percentile:76.81(Instruments & Instrumentation)In order to realize a tunable, highly-efficient, high average power, high peak power and ultra-short pulse free-electron laser(FEL) as a supertool [1]of the 21st for all , the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil-off super-conducting rf linac[2] with an energy-recovery geometry as a conceptual design. Our discussions on the supertool will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 8 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode[3], and the energy-recovery geometry.
Minehara, Eisuke; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Nishimori, Nobuyuki; Kikuzawa, Nobuhiro; Sugimoto, Masayoshi; Yamauchi, Toshihiko; Hayakawa, Takehito; Shizuma, Toshiyuki
Proceedings of 13th Symposium on Accelerator Science and Technology, p.150 - 154, 2001/10
We need a powerful and efficient free-electron laser(FEL) for industrial uses, for examples, pharmacy, medical, defense, shipbuilding, semiconductor industry, chemical industries, environmental sciences, space-debris, power beaming and so on. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have successfully demonstrated the efficient and powerful FEL driven by a compact, stand-alone and zero-boil-off super-conducting rf linac with an energy-recovery geometry. Our discussions on the FEL will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil-off cryostat concept and operational experience over these 8 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry.