Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Jolliet, S.*; Angelino, P.*; Bottino, A.*; Idomura, Yasuhiro; Villard, L.*
Theory of Fusion Plasmas, ISPP21, p.345 - 351, 2004/00
Global particle-in-cell (PIC) simulations are a very useful tool for studying the time evolution of turbulence induced by ion-temperature-gradient (ITG) instabilities. Unfortunately, the linear code LORB5 and its non-linear version ORB5 require high computational power. In order to study more sophisticated models, we need to optimize these codes. We will focus on LORB5, which uses a cylindrical grid (r,z) for solving the Vlasov equation and a (s,) grid for the Poisson equation. The approach presented in this work consists of implementing the gyrokinetic model using a single (s,
) grid. Here
is the straight-field-line poloidal coordinate. A method to avoid the singularity at the magnetic axis is presented, and a benchmark with the CYCLONE case is shown.