Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Determination of $$^{90}$$Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation

Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*

Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04

 Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)

Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a $$^{90}$$Sr$$^{2+}$$ quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed $$^{90}$$Sr$$^{2+}$$ in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify $$^{90}$$Sr$$^{2+}$$ in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:1 Percentile:41.04(Instruments & Instrumentation)

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-014, 106 Pages, 2022/08

JAEA-Review-2022-014.pdf:10.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station.

Journal Articles

Novel $$^{90}$$Sr analysis of environmental samples by ion-laser interaction mass spectrometry

Honda, Maki; Martschini, M.*; Marchhart, O.*; Priller, A.*; Steier, P.*; Golser, R.*; Sato, Tetsuya; Tsukada, Kazuaki; Sakaguchi, Aya*

Analytical Methods, 14(28), p.2732 - 2738, 2022/07

 Times Cited Count:3 Percentile:32.07(Chemistry, Analytical)

The sensitive $$^{90}$$Sr analysis with accelerator mass spectrometry (AMS) was developed for the advances of environmental radiology. One advantage of AMS is the ability to analyze various environmental samples with $$^{90}$$Sr/$$^{88}$$Sr atomic ratios of 10$$^{-14}$$ in a simple chemical separation. Three different IAEA samples with known $$^{90}$$Sr concentrations (moss-soil, animal bone, Syrian soil: 1 g each) were analyzed to assess the validity of the chemical separation and the AMS measurement. The $$^{90}$$Sr measurements were conducted on the AMS system combined with the Ion Laser InterAction MasSpectrometry (ILIAMS) setup at the University of Vienna, which has excellent isobaric separation performance. The isobaric interference of $$^{90}$$Zr in the $$^{90}$$Sr AMS was first removed by chemical separation. The separation factor of Zr in two-step column chromatography with Sr resin and anion exchange resin was 10$$^{6}$$. The $$^{90}$$Zr remaining in the sample was removed by ILIAMS effectively. This simple chemical separation achieved a limit of detection $$<$$ 0.1 mBq in the $$^{90}$$Sr AMS, which is lower than typical $$beta$$-ray detection. The agreement between AMS measurements and nominal values for the $$^{90}$$Sr concentrations of IAEA samples indicated that the new highly-sensitive $$^{90}$$Sr analysis in the environmental samples with AMS is reliable even for high matrix samples of soil and bone.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-024, 75 Pages, 2021/01

JAEA-Review-2020-024.pdf:5.43MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance using Laser Resonance Ionization" conducted in FY2019. In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-027, 70 Pages, 2020/01

JAEA-Review-2019-027.pdf:5.18MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance Using Laser Resonance Ionization". In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

Journal Articles

Measurement of the thermal neutron cross section of the $$^{90}$$Sr(n,$$gamma$$)$$^{91}$$Sr reaction

Harada, Hideo*; Sekine, Toshiaki; ; Ishioka, Noriko; Kobayashi, Katsutoshi; Otsuki, Tsutomu*; Kato, Toshio*

Journal of Nuclear Science and Technology, 31(3), p.173 - 179, 1994/03

 Times Cited Count:25 Percentile:87.08(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Radiochemical analysis of strontium-90 and gross alpha activity in radioactive eiquid waste

Fujisaki, Setsuo

Kyoto Daigaku Genshiro Jikkenjo Hoshasei Haikibutsu Kanri Semmon Kenkyukai Hokokusho, p.20 - 25, 1981/00

no abstracts in English

Journal Articles

Estimation of dietary intake of strontium-90 from excreta analysis

Journal of Nuclear Science and Technology, 1(7), p.255 - 263, 1964/00

no abstracts in English

Oral presentation

Measurement of Sr-90 in high matrix samples by ICP-MS

Fujiwara, Kenso; Yanagisawa, Kayo*; Iijima, Kazuki

no journal, , 

Since Sr-90 is one of the high yield and hazardous fission products, accurate and low-level detection of Sr-90 is essential for environmental samples. Especially, in case of nuclear power plant accidents, rapid and precise assessment of Sr-90 for environmental monitoring and health physics is required. In order to evaluate the migration of radionuclides in the environment, not only Sr-90 in water but also those in soil and biological samples should be measured. A new method for rapid quantification of Sr-90 by online solid phase extraction coupled with inductively coupled plasma mass spectrometry (SPE-ICP-MS) has been developed. In this method, it is unavoidable to eliminate the interference by polyatomic ion (e.g., ArCa, Ca$$_{2}$$) induced by isotopes and matrices in fishes and soil. In this study, SPE-ICP-MS method was applied to the measurement of Sr-90 in fishes, and the influence of the Sr isotopes and coexisting ions such as Ca was evaluated.

10 (Records 1-10 displayed on this page)
  • 1