Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 39

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of environmental mitigation technology with novel water purification agents (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2023-053, 87 Pages, 2024/05

JAEA-Review-2023-053.pdf:4.67MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted from FY2020 to FY2022. The present study aims to develop a reusable adsorbent for strontium ions with high adsorption property to contribute to the improvement of the treatment process of radioactive contaminated water generated by the Great East Japan Earthquake. As a result, reusable adsorbent materials showing excellent Sr adsorption performances were developed. The current adsorbent materials for strontium are extremely expensive and single use, so the storage and disposal of massive generation of waste have become a major problem.

Journal Articles

Determination of $$^{90}$$Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation

Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*

Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04

 Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)

Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a $$^{90}$$Sr$$^{2+}$$ quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed $$^{90}$$Sr$$^{2+}$$ in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify $$^{90}$$Sr$$^{2+}$$ in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.

Journal Articles

A New application technique of a position-sensitive liquid light guide Cerenkov counter for the simultaneous position detection of $$^{90}$$Sr/$$^{90}$$Y and $$^{137}$$Cs radioactivity

Terasaka, Yuta; Uritani, Akira*

Nuclear Instruments and Methods in Physics Research A, 1049, p.168071_1 - 168071_7, 2023/04

 Times Cited Count:1 Percentile:41.04(Instruments & Instrumentation)

JAEA Reports

Development of environmental mitigation technology with novel water purification agents (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2022-067, 98 Pages, 2023/03

JAEA-Review-2022-067.pdf:3.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2021. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. This fiscal year, the preparation method of materials was improved based on the results obtained in the first year of the project. Moreover, various metal salts were added as additives to see the influence on the yield and adsorption performance. Structural analyses were conducted by observing the resulting materials with SEM, and theoretical analyses were performed by combining ...

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-014, 106 Pages, 2022/08

JAEA-Review-2022-014.pdf:10.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station.

Journal Articles

Novel $$^{90}$$Sr analysis of environmental samples by ion-laser interaction mass spectrometry

Honda, Maki; Martschini, M.*; Marchhart, O.*; Priller, A.*; Steier, P.*; Golser, R.*; Sato, Tetsuya; Tsukada, Kazuaki; Sakaguchi, Aya*

Analytical Methods, 14(28), p.2732 - 2738, 2022/07

 Times Cited Count:3 Percentile:32.07(Chemistry, Analytical)

The sensitive $$^{90}$$Sr analysis with accelerator mass spectrometry (AMS) was developed for the advances of environmental radiology. One advantage of AMS is the ability to analyze various environmental samples with $$^{90}$$Sr/$$^{88}$$Sr atomic ratios of 10$$^{-14}$$ in a simple chemical separation. Three different IAEA samples with known $$^{90}$$Sr concentrations (moss-soil, animal bone, Syrian soil: 1 g each) were analyzed to assess the validity of the chemical separation and the AMS measurement. The $$^{90}$$Sr measurements were conducted on the AMS system combined with the Ion Laser InterAction MasSpectrometry (ILIAMS) setup at the University of Vienna, which has excellent isobaric separation performance. The isobaric interference of $$^{90}$$Zr in the $$^{90}$$Sr AMS was first removed by chemical separation. The separation factor of Zr in two-step column chromatography with Sr resin and anion exchange resin was 10$$^{6}$$. The $$^{90}$$Zr remaining in the sample was removed by ILIAMS effectively. This simple chemical separation achieved a limit of detection $$<$$ 0.1 mBq in the $$^{90}$$Sr AMS, which is lower than typical $$beta$$-ray detection. The agreement between AMS measurements and nominal values for the $$^{90}$$Sr concentrations of IAEA samples indicated that the new highly-sensitive $$^{90}$$Sr analysis in the environmental samples with AMS is reliable even for high matrix samples of soil and bone.

Journal Articles

Solidification and stabilization of strontium and chloride ions in thermally treated calcium aluminate cement modified with or without sodium polyphosphate

Irisawa, Keita; Namiki, Masahiro*; Taniguchi, Takumi; Garcia-Lodeiro, I.*; Kinoshita, Hajime*

Cement and Concrete Research, 156, p.106758_1 - 106758_8, 2022/06

 Times Cited Count:8 Percentile:56.17(Construction & Building Technology)

Cementation of aqueous radioactive waste contaminated with a significant $$^{90}$$Sr is challenging, and utilization of calcium aluminate cement (CAC) modified with sodium polyphosphate (CAP) is interesting. The present study investigated solidification and stabilization of Sr$$^{2+}$$ and Cl$$^{-}$$ ions in CAC and CAP cured in open system at 90$$^{circ}$$C and in closed system at 20$$^{circ}$$C. A leaching test showed that Sr$$^{2+}$$ ion could be stabilized more effectively in the CAP than in the CAC. On the other hand, the CAC cured at 20$$^{circ}$$C had the best stabilization for Cl$$^{-}$$ ion among the samples. Friedel's salt formed in the CAC may have contributed to the immobilization of Cl$$^{-}$$ ion. Although the stabilization of Cl$$^{-}$$ ion by CAP was less effective than CAC, it was significantly improved by the thermal treatment. The results may suggest that Cl$$^{-}$$ ion in the CAP was incorporated in the poorly crystalline apatite structure.

Journal Articles

Hydrogen-Ti$$^{3+}$$ complex as a possible origin of localized electron behavior in hydrogen-irradiated SrTiO$$_3$$

Ito, Takashi

e-Journal of Surface Science and Nanotechnology (Internet), 20(3), p.128 - 134, 2022/05

JAEA Reports

Development of environmental mitigation technology with novel water purification agents (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2021-051, 81 Pages, 2022/01

JAEA-Review-2021-051.pdf:4.03MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted in FY2020. The present study aims to develop a reusable adsorbent for strontium ions through joint research between Japan and the United Kingdom, and to reduce the amount of used adsorbent generated through the decontamination process. The basic strategy of this research is to produce adsorbents and examine their Sr adsorption performance at Shinshu University. The structural analyses of the adsorbents are conducted by the Institute for Molecular Science (IMS) and the UK teams.

JAEA Reports

Preparation of carbonate slurry simulating chemical composition of slurry in overflowed high integrity container and evaluation of its characteristics

Horita, Takuma; Yamagishi, Isao; Nagaishi, Ryuji; Kashiwaya, Ryunosuke*

JAEA-Technology 2021-012, 34 Pages, 2021/07

JAEA-Technology-2021-012.pdf:2.1MB
JAEA-Technology-2021-012(errata).pdf:0.18MB

Waste mainly consisting of carbonate precipitates (carbonate slurry) from the Advanced Liquid Processing System (ALPS) and the improved ALPS at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Holdings, Inc. have been storing in the High Integrity Container (HIC). The supernatant solution of carbonate slurry contained in some of HICs were overflowed in April of 2015. The all of level of liquid in the HICs were investigated; however, almost of the HICs were under the level of overflow. The mechanism of overflow suggested to be depending on the difference of the properties of the carbonate slurry such as the retention/release characteristics of the bubbles. Therefore, in order to clarify the mechanism of leakage, the repeatability experiment was carried out by using simulated carbonate slurry. The simulated carbonate slurry was perpetrated by using the same cross-flow filter system of the actual ALPS. Moreover, the preparative conditions for the simulated carbonate slurry were the same as Mg/Ca concentration ratio in inlet water of the ALPS (raw water) and the ALPS operating conditions. The chemical characteristics of simulated carbonate slurries were revealed by ICP-AES, pH meter, etc. The density of the settled slurry layer tended to increase depending on the calcium concentration in the raw water. The bubble injection test was conducted in order to investigate the bubble retention/release behavior in the simulated carbonate slurry layer. The simulated carbonate slurry with high settling density, which was generated by high calcium concentration solution was revealed to retain the injected bubbles. Since the ratio of concentration calcium and magnesium during the carbonate slurry generation is assumed to affect the retention of bubbles in the slurry layer, the information on the composition of raw water is one of important factor for overflow of HICs.

Journal Articles

Supercritical water pretreatment method for analysis of strontium and uranium in soil (Andosols)

Nagaoka, Mika; Fujita, Hiroki; Aida, Taku*; Guo, H.*; Smith, R. L. Jr.*

Applied Radiation and Isotopes, 168, p.109465_1 - 109465_6, 2021/02

 Times Cited Count:0 Percentile:0.00(Chemistry, Inorganic & Nuclear)

The radioactivities in the environmental samples are analyzed to monitor the nuclear power facilities. The pretreatment of radioactive nuclides of alpha and beta emitters in the environmental samples is performed with acid to decompose organic matter and extract object nuclide such as $$^{90}$$Sr, U and Pu. However, the pretreatment methods are time-consuming and used many concentrated acid solutions that are unsafe and hazardous. Therefore, we develop to the new pretreatment method using supercritical water instead of acid. Hydrothermal pretreatment of soils (Andosols) from Ibaraki prefecture (Japan) was used to improve methods for monitoring radioactive Sr and U. Calcined samples were pretreated with subcritical or supercritical water (SCW) followed by extraction with 0.5 M HNO$$_{3}$$ solutions. With SCW pretreatment, recoveries of Sr and U were 70% and 40%, respectively. Experimental recoveries obtained can be described by a linear relationship in water density. The proposed method is robust and can lower environmental burden of routine analytical protocols.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-024, 75 Pages, 2021/01

JAEA-Review-2020-024.pdf:5.43MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance using Laser Resonance Ionization" conducted in FY2019. In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

JAEA Reports

Development of technology for rapid analysis of strontium-90 with low isotopic abundance using laser resonance ionization (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-027, 70 Pages, 2020/01

JAEA-Review-2019-027.pdf:5.18MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Technology for Rapid Analysis of Strontium-90 with Low Isotopic Abundance Using Laser Resonance Ionization". In this study, we will develop a rapid analysis technique for strontium-90 using diode laser-based resonance ionization with elemental and isotopic selectivity. Strontium-90 is one of the major difficult-to-measure nuclides released into the environment due to the accident at Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station. Our method is particularly intended for real samples which contain high concentrations of strontium stable isotopes such as marine samples.

Journal Articles

Application of phosphate modified CAC for incorporation of simulated secondary aqueous wastes in Fukushima Daiichi NPP, 1; Characterization of solidified cementitious systems with reduced water content

Garcia-Lodeiro, I.*; Lebon, R.*; Machoney, D.*; Zhang, B.*; Irisawa, Keita; Taniguchi, Takumi; Namiki, Masahiro*; Osugi, Takeshi; Meguro, Yoshihiro; Kinoshita, Hajime*

Proceedings of 3rd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2018) (USB Flash Drive), 4 Pages, 2018/11

Journal Articles

Chemical states of trace-level strontium adsorbed on layered oxide by XPS and XANES under total reflection condition

Baba, Yuji; Shimoyama, Iwao

Photon Factory Activity Report 2016, 2 Pages, 2017/00

In order to elucidate the adsorption states of radioactive Sr-90 in soil, chemical bonding states of non-radioactive strontium adsorbed on layered oxide (mica) have been investigated by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy. Since the number of atoms in radioactive Sr-90 is extremely small, the XPS and XANES were measured under total reflection condition of the incident X-rays. The detection limit in total reflection XPS was about 150 pg/cm$$^{2}$$, which corresponds to 300 Bq of Sr-90. The Sr 2p$$_{3/2}$$ core-level energy in XPS shifted to lower energy with the decrease in the thickness of Sr layer. Also, the Sr 2p$$_{3/2}$$ $$rightarrow$$ Sr 4d$$^{*}$$ resonance energy in XANES shifts to lower energy with the decrease in the thickness. On the basis of a simple point charge model, it was elucidated that the chemical bond between Sr and mica surface becomes ionic with the decrease in the adsorbed amount of strontium.

Journal Articles

Environmental measurement using plastic scintillation fiber after the accident at the Fukushima Daiichi Nuclear Power Plant

Sanada, Yukihisa

Kogaku, 45(8), p.300 - 305, 2016/08

For the purpose of environmental radiation measurement, decontamination effect and detection of leakage of radionuclide plastic scintillation fiber (PSF) had been used for the wide area as technique to measure radiation distribution quickly after the Fukushima Daiichi Nuclear Power Plant accident that occurred in March, 2011. The PSF can easily measure radiation distribution due to position sensing of radiation source. The PSF was used for the measurement before and after the decontamination by considering features that PSF obtained many point data at one time. The PSF was used for the measurement of radiocesium concentration in sediment of irrigation pond by considering features that PSF has high water resistance. This paper described the principle of PSF and the application example after the accident at the Fukushima Daiichi Nuclear Power Plant.

JAEA Reports

Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers (literature survey)

Yamagishi, Isao

JAERI-Review 2001-027, 52 Pages, 2001/07

JAERI-Review-2001-027.pdf:3.59MB

The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. For selective separation of Sr, there is no promising exchanger up to now. Sintered ceramics are favorable waste forms of inorganic ion-exchangers. Their stabilities are largely influenced by composition of exchangers, qualities of ceramics and disposal scenario.

JAEA Reports

Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

Yamagishi, Isao; Yamaguchi, Isoo; Kubota, Masumitsu*

JAERI-Research 2000-038, 40 Pages, 2000/09

JAERI-Research-2000-038.pdf:1.33MB

no abstracts in English

Journal Articles

Measurement of the thermal neutron cross section of the $$^{90}$$Sr(n,$$gamma$$)$$^{91}$$Sr reaction

Harada, Hideo*; Sekine, Toshiaki; ; Ishioka, Noriko; Kobayashi, Katsutoshi; Otsuki, Tsutomu*; Kato, Toshio*

Journal of Nuclear Science and Technology, 31(3), p.173 - 179, 1994/03

 Times Cited Count:25 Percentile:87.08(Nuclear Science & Technology)

no abstracts in English

39 (Records 1-20 displayed on this page)