Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research and development program on accelerator driven subcritical system in JAERI

Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Kurata, Yuji; Mizumoto, Motoharu; Sasa, Toshinobu; Nishihara, Kenji; Saito, Shigeru; Umeno, Makoto*; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The Japan Atomic Energy Research Institute (JAERI) has been proceeding with the research and development (R&D) on accelerator-driven subcritical system (ADS). The ADS proposed by JAERI is a lead-bismuth (Pb-Bi) eutectic cooled fast subcritical core with 800 MWth. To realize such an ADS, some technical issues should be studied, developed and demonstrated. JAERI has started a comprehensive R&D program since the fiscal year of 2002 to acquire knowledge and elemental technology that are necessary for the validation of engineering feasibility of the ADS. The first stage of the program had been continued for three years. The program is conducted by JAERI, and many institutes, universities and private companies were involved. Items of R&D are concentrated on three technical areas peculiar to the ADS: (1) superconducting linear accelerator (SC-LINAC), (2) Pb-Bi eutectic as spallation target and core coolant, and (3) subcritical core design and technology. In the present work, the outline and the results in the first stage of the program are reported.

Journal Articles

R&D activities on accelerator-driven transmutation system in JAERI

Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Kikuchi, Kenji; Kurata, Yuji; Sasa, Toshinobu; Umeno, Makoto*; Saito, Shigeru; Nishihara, Kenji; Mizumoto, Motoharu; Takano, Hideki*; et al.

EUR-21227 (CD-ROM), p.483 - 493, 2005/00

JAERI is conducting the study on the dedicated transmutation system using the accelerator driven subcritical system (ADS). A subcritical reactor with the thermal power of 800 MW has been proposed. Many research and development activities including the conceptual design study are under way and planned at JAERI to examine the feasibility of the ADS. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the spallation target using lead-bismuth eutectic (LBE), material corrosion, thermal-hydraulics, polonium behavior, and irradiation effect on materials are being studied. Moreover, in the framework of the J-PARC project, JAERI plans to construct the Transmutation Experimental Facility (TEF) to study the feasibility of the ADS using a high-energy proton beam and nuclear fuel and to establish the technology for the LBE spallation target and relevant materials.

Journal Articles

Research activities for accelerator-driven transmutation system at JAERI

Sasa, Toshinobu

Progress in Nuclear Energy, 47(1-4), p.314 - 326, 2005/00

 Times Cited Count:12 Percentile:65.49(Nuclear Science & Technology)

JAERI performs R&D of accelerator-driven systems (ADS) for transmutation of long-lived nuclides under national OMEGA program since 1988. To study the basic characteristics of ADS, Transmutation Experimental Facility is proposed under a framework of JAERI-KEK joint J-PARC project. A comprehensive R&D program for future ADS plant is also performed since 2002. R&D items are categorized into three fields, (1) accelerator (superconducting LINAC design), (2) lead-bismuth target/coolant (material compatibility, thermal-hydraulics around beam window and polonium behavior) and (3) subcritical core (system design, nuclear data, subcriticality measurement, and safety issues of ADS). First phase of the program will be done within three years. Assemble test of the cryomodule, heat transfer experiment using Pb-Bi thermal-hydraulics loop, cold test of polonium vaporization, design study of the 800MW ADS subcritical core are now underway. Part of this job was funded by the MEXT as one of the public offered R&D program for innovative nuclear systems.

Journal Articles

Research and development on accelerator-driven transmutation system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; Ouchi, Nobuo; et al.

Nuclear Engineering and Design, 230(1-3), p.209 - 222, 2004/05

 Times Cited Count:32 Percentile:88.72(Nuclear Science & Technology)

JAERI carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2,500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800MW of thermal output. A superconducting linear accelerator with the beam power of 30MW is connected to drive the subcritical core. Many research and development activities are under way and planned in the fields of subcritical core design, spallation target technology, lead-bismuth handling technology, accelerator development, and minor actinide fuel development. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the Transmutation Experimental Facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.

Journal Articles

Present status and perspective on nuclear transmutation, C; Accelerator driven transmutation system

Oigawa, Hiroyuki

Genshikaku Kenkyu, 47(6), p.39 - 52, 2003/03

Minor actinide (MA) and long-lived fission product (LLFP) keep their radiological toxicity in high level waste of nuclear fuel cycle for long period. In order to transmute such nuclides to short-lived or stable ones, the Accelerator-Driven Transmutation System (ADS) is proposed and developed. This article presents the current status of the research and development on ADS, technical issues to be solved, the experimental program under the framework of the High-Intensity Proton Accelerator Project (J-PARC), and worldwide activities.

Journal Articles

Research and development program on accelerator driven system in JAERI

Oigawa, Hiroyuki; Ouchi, Nobuo; Kikuchi, Kenji; Tsujimoto, Kazufumi; Kurata, Yuji; Sasa, Toshinobu; Takano, Hideki; Nishihara, Kenji; Saito, Shigeru; Futakawa, Masatoshi; et al.

Proceedings of GLOBAL2003 Atoms for Prosperity; Updating Eisenhower's Global Vision for Nuclear Energy (CD-ROM), p.1374 - 1379, 2003/00

JAERI is developing an Accelerator Driven System (ADS) for transmutation of nuclear waste such as minor actinide and long-lived fission product. To acquire the knowledge and the elemental technology that are necessary for the validation of engineering feasibility of ADS, JAERI has started a comprehensive research and development (R&D) program since 2002. The first stage of the program will be continued for three years. The program is conducted by JAERI with many institutes, universities and private companies. Items of R&D are concentrated on three technical areas peculiar to ADS: (1) a superconducting linear accelerator, (2) lead-bismuth eutectic as spallation target and core coolant, and (3) subcritical core design and physics. The outline and the preliminary results of the program are summarized in the present report.

Journal Articles

Research and development on accelerator-driven system for transmutation of long-lived nuclear waste at JAERI

Oigawa, Hiroyuki; Sasa, Toshinobu; Takano, Hideki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; et al.

Proceedings of 13th Pacific Basin Nuclear Conference (PBNC 2002) (CD-ROM), 8 Pages, 2002/10

To reduce the burden on the final disposal of the nuclear waste, the Acclelerator-Driven System (ADS) which can transmute minor actinides efficiently has been studied in JAERI. The proposed ADS design is an 800MWth subcritical core with lead-bismuth coolant and minor-actinide nitride fuel driven by a neutron source of a superconductivity linear accelerator with 30MW and a lead-bismuth spallation target. To realize the ADS, many research and development are under way in the fields of the accelerator, the spallation target and the nitride fuel. Moreover, a new experimental facility, the Transmutation Experimental Facility, is proposed under a framework of the High-Intensity Proton Accelerator Project to study the feasibility of the ADS from physics and engineering aspects.

Journal Articles

The Current status of R&D for accelerator-driven system at JAERI

Sasa, Toshinobu; Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Umeno, Makoto*; Takano, Hideki*

Proceedings of International Conference on Global Environment and Advanced Nuclear Power Plants (GENES4/ANP 2003) (CD-ROM), 8 Pages, 2000/09

Japan Atomic Energy Research Institute (JAERI) performs research and development for accelerator-driven transmutation systems to improve the environmental impact and increase a capacity of waste disposal plant. The system consists of a superconducting proton LINAC, Pb-Bi eutectic spallation target and Pb-Bi cooled subcritical core. Thermal output of the system is 800MW by injection of the proton beam with the power of 20 to 30MW and then, about 250kg of minor actinides can be transmuted annually. To study and evaluate the feasibility of ADS by a physical and an engineering viewpoint, the Transmutation Experimental Facility is proposed under a framework of J-PARC project. In the presentation, the R&D activities by the contract between the Ministry of Education, Culture, Sports, Science and Technology will be presented.

8 (Records 1-8 displayed on this page)
  • 1