Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamauchi, Michinori*; Nishitani, Takeo; Nishio, Satoshi
Denki Gakkai Rombunshi, A, 125(11), p.943 - 946, 2005/11
Considering the geometrical characteristics of tokamak reactors with low aspect ratio, a basic neutronics strategy was derived to construct the inboard structure mainly for neutron shielding and produce enough tritium in the outboard blanket. The designs for optimal inboard shield were surveyed and necessary thickness was estimated to make the neutron flux low enough on the super-conducting magnet. In addition, the outer blanket designs were studied to attain the tritium breeding ratio (TBR) large enough for a self-sustaining fusion reactor on the basis of the advanced fusion reactor materials.
Tamai, Hiroshi; Ishida, Shinichi; Kurita, Genichi; Sakamoto, Yoshiteru; Fujita, Takaaki; Shirai, Hiroshi; Tsuchiya, Katsuhiko; Matsukawa, Makoto; Sakasai, Akira; Sakurai, Shinji; et al.
Proceedings of 29th European Physical Society Conference on Plasma Physics and Controlled Fusion, 4 Pages, 2002/00
This paper presents the feasibility and issues of steady state operation with a central current hole for JT-60SC, the superconducting tokamak to be modified from JT-60, from the view of reactor applicability of the current hole. An impact of the current hole on fusion engineering would stand in no necessity of central current drive leading to a remarkable reduction of neutral beam injection energy. The 1.5D time-dependent transport code analysis is made with using thermal and particle transport coefficients deduced from observations in JT-60U as a function of the magnetic shear. A steady state operation with HHy2~1.6 and beta_N~4 is obtained at Ip=1.5 MA, Bt=2 T and q95=4.5 by off-axis beams of 11.2 MW. The bootstrap fraction of ~75% of the plasma current and the current hole region of ~30% of the minor radius are sustained up to 70 s. The results suggest that a bootstrap current evolution near the current hole region and a relation between the location of ITB and the central current hole region are important to achieve a steady state plasma compatible with the current hole.