Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sono, Hiroki; Yanagisawa, Hiroshi*; Miyoshi, Yoshinori
JAERI-Tech 2003-096, 84 Pages, 2004/01
Prior to the supercritical experiments using a water-reflected core of the TRACY Facility, neutronic characteristics regarding criticality and reactivity of the core system were evaluated. In the analyses, a continuous energy Monte Carlo code, MVP, and a two-dimensional transport code, TWOTRAN, were used together with a nuclear data library, JENDL-3.3. By comparison to the characteristics in the former-used bare core system of TRACY, the water reflector was estimated not to change the kinetic parameter and to reduce the critical solution level by 20 %, the temperature coefficient of reactivity by 610 %, and the void coefficient of reactivity by 18 %, respectively. According to the Nordheim-Fuchs model, the first peak power during a power excursion was evaluated to be 15 % smaller than that in the bare system under the same conditions of fuel and reactivity insertion. The influence of the void feedback effect of reactivity, which is left out of consideration in the model, on the power characteristics will be evaluated from the results of the experiments.
Nakajima, Ken
Proceedings of International Conference on the New Frontiers of Nuclear Technology; Reactor Physics, Safety and High-Performance Computing (PHYSOR 2002) (CD-ROM), 8 Pages, 2002/10
The nuclear characteristics of TRACY, such as the criticality, the / ratio, the peak power, the energy of pulse, and the total energy, have been evaluated using the experimental data. TRACY is a supercritical reactor fueled with low-enriched uranyl nitrate aqueous solution to simulate criticality accidents in a fuel processing facility, such as a spent-fuel reprocessing plant. In this evaluation, the availability of criticality calculation and the models to evaluate the power and energy have been studied.
Nakajima, Ken; ;
Proceedings of 6th International Conference on Nuclear Criticality Safety (ICNC '99), 3, p.1286 - 1292, 1999/00
no abstracts in English
Nakajima, Ken; ; ; ; ; Sakuraba, Koichi; Ono, Akio
PHYSOR 96: Int. Conf. on the Physics of Reactors, 4, p.L83 - L92, 1996/00
no abstracts in English
Kato, Takashi; Tada, Eisuke; Hiyama, Tadao; Kawano, Katsumi; ; ; ; ; Shimamoto, Susumi
Fusion Technology 1990, p.1535 - 1539, 1991/00
no abstracts in English