Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-053, 64 Pages, 2021/01

JAEA-Review-2020-053.pdf:3.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy" conducted in FY2019.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research) FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-030, 66 Pages, 2020/03

JAEA-Review-2019-030.pdf:7.11MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy". In the present study, we focus on uranium that is the main component element in debris, and identify the altered phase produced on the debris surface under various conditions by time-resolved laser fluorescence spectroscopy (TRLFS) with high sensitivity to hexavalent uranium (U(VI)) that is stable in oxidation environment. In particular, further high-sensitive and high-resolution measurements are implemented by improving the fluorescence yields and suppressing the broadening of the peaks through the measurements at ultra-low temperature. In addition, with the supports by quantum chemical calculations, multivariate analysis, and machine learning, the method will lead to the identification of multicomponent and heterogeneous altered phase of fuel debris.

Journal Articles

Technical basis of accident tolerant fuel updated under a Japanese R&D project

Yamashita, Shinichiro; Nagase, Fumihisa; Kurata, Masaki; Nozawa, Takashi; Watanabe, Seiichi*; Kirimura, Kazuki*; Kakiuchi, Kazuo*; Kondo, Takao*; Sakamoto, Kan*; Kusagaya, Kazuyuki*; et al.

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

In Japan, the research and development (R&D) project on accident tolerant fuel and other components (ATFs) of light water reactors (LWRs) has been initiated in 2015 for establishing technical basis of ATFs. The Japan Atomic Energy Agency (JAEA) has coordinated and carried out this ATF R&D project in cooperation with power plant providers, fuel venders and universities for making the best use of the experiences, knowledges in commercial uses of zirconium-base alloys (Zircaloy) in LWRs. ATF candidate materials under consideration in the project are FeCrAl steel strengthened by dispersion of fine oxide particles(FeCrAl-ODS) and silicon carbide (SiC) composite, and are expecting to endure severe accident conditions in the reactor core for a longer period of time than the Zircaloy while maintaining or improving fuel performance during normal operations. In this paper, the progresses of the R&D project are reported.

Journal Articles

Sorption of Eu$$^{3+}$$ on Na-montmorillonite studied by time-resolved laser fluorescence spectroscopy and surface complexation modeling

Sasaki, Takayuki*; Ueda, Kenyo*; Saito, Takumi; Aoyagi, Noboru; Kobayashi, Taishi*; Takagi, Ikuji*; Kimura, Takaumi; Tachi, Yukio

Journal of Nuclear Science and Technology, 53(4), p.592 - 601, 2016/04

 Times Cited Count:9 Percentile:75.69(Nuclear Science & Technology)

The influences of pH and the concentrations of Eu$$^{3+}$$ and NaNO$$_{3}$$ on the sorption of Eu$$^{3+}$$ to Na-montmorillonite were investigated through batch sorption measurements and time-resolved laser fluorescence spectroscopy (TRLFS). The pH had a little effect on the distribution coefficients (Kd) in 0.01 M NaNO$$_{3}$$, whereas the Kd strongly depended on pH at 1 M NaNO$$_{3}$$. A cation exchange model combined with a one-site non-electrostatic surface complexation model was successfully applied to the measured Kd. The TRLFS spectra of Eu$$^{3+}$$ sorbed were processed by parallel factor analysis (PARAFAC), which corresponded to one outer-sphere (factor A) and two inner-sphere (factor B and C) complexes. It turned out that factors A and B correspond to Eu$$^{3+}$$ sorbed by ion exchange sites and inner-sphere complexation with hydroxyl groups of the edge faces, respectively. Factor C became dominant at relatively high pH and ionic strength and likely correspond to the precipitation of Eu(OH)$$_{3}$$ on the surface.

Journal Articles

Characterization of Eu(III) adsorbed onto chitin and chitosan by time-resolved laser-induced fluorescence spectroscopy

Ozaki, Takuo; Kimura, Takaumi; Yoshida, Zenko; Francis, A. J.*

Chemistry Letters, 32(7), p.560 - 561, 2003/07

 Times Cited Count:4 Percentile:23.45(Chemistry, Multidisciplinary)

no abstracts in English

Journal Articles

Operation and control of JT-60U ECRF system

Shinozaki, Shinichi; Shimono, Mitsugu; Terakado, Masayuki; Anno, Katsuto; Hiranai, Shinichi; Ikeda, Yoshitaka; Ikeda, Yukiharu; Imai, Tsuyoshi; Kasugai, Atsushi; Moriyama, Shinichi; et al.

Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering (SOFE '99), p.403 - 406, 1999/10

no abstracts in English

Journal Articles

Speciation study of uranium in the ternary system UO$$_{22+}$$-F$$^{-}$$-SO$$_{42-}$$ by time-resolved laser-induced fluorescence spectroscopy (TRLFS)

Kato, Yoshiharu; Kimura, Takaumi; Yoshida, Zenko; G.Meinrath*

Uranium Mining and Hydrogeology II, p.227 - 235, 1998/00

no abstracts in English

Journal Articles

Speciation of actinides in aqueous solution by time-resolved laser-induced fluorescence spectroscopy(TRLFS)

Kimura, Takaumi; ; G.Meinrath*; Yoshida, Zenko; Choppin, G. R.*

JAERI-Conf 95-005, Vol. 2, 0, p.473 - 485, 1995/03

no abstracts in English

8 (Records 1-8 displayed on this page)
  • 1