Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sonoda, Shinya*; Nabetani, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Kimura, Shotaro*; Sawano, Tatsuya*; Tanimori, Toru*; Matsuoka, Yoshihiro*; et al.
no journal, ,
We have developed the ETCC for new medical imaging device and succeeded in imaging the some medical imaging reagents. Thus, this detector is thought promising for a new medical imaging. The F-18 point-like and rod-like phantoms are measured with new ETCC, and the imaging performance was estimated. In addition, measurement of Tc-95m which is produced by Japan Atomic Energy Agency was performed.
Sonoda, Shinya*; Nabetani, Akira*; Kimura, Hiroyuki*; Kabuki, Shigeto*; Takada, Atsushi*; Kubo, Hidetoshi*; Komura, Shotaro*; Sawano, Tatsuya*; Tanimori, Toru*; Matsuoka, Yoshihiro*; et al.
no journal, ,
We present the performance results using this new ETCC such as the imaging test using F-18 in point-like and rod-like phantoms with varying the intense of radiation. In addition, the measurementof Tc-95m which is produced by Japan Atomic Energy Agency was performed. Tc-95m emitsthe -rays with the energy, 204, 583, and 835 keV, and then an image with multi-energies is examined. The position resolution achieves less than about 8 degrees from 10 degrees at 511 keV by this improvement. Further improvement of the angular resolution (position resolution) will be presented until 2015 spring. Also, we are developing the next ETCC by increasing the thickness of the scintillator from 1 rad. to 2 rad. and the gas pressure from 1 atm to 3 atm which improvethe detection efficiency by a factor of
5 at 511 keV. By these improvements, the imaging time of mouse is expected to be reduced from several hours with to
20 minutes for lots of kinds of RIs with the energy band from 0.1-2 MeV.
Hatsukawa, Yuichi; Tsukada, Kazuaki; Hashimoto, Kazuyuki; Sato, Tetsuya; Asai, Masato; Toyoshima, Atsushi; Nagai, Yasuki; Tanimori, Toru*; Sonoda, Shinya*; Kabuki, Shigeto*; et al.
no journal, ,
In recent years, the Compton camera which is originally developed for the astrophysical studies was applied for medical diagnostic usage. For the Compton camera imaging require technetium isotopes emitting higher energy -rays. Two Tc isotopes,
Tc (T
= 60 d; E
= 204, 582 and 835 keV) and
Tc(T
= 4.28 d, E
= 778 and 812 keV) are candidates for Compton camera imaging. Compton camera imaging can realize high position resolution without collimator. Because of no collimator using, the Compton camera makes higher
-ray detection efficiency. Compared with SPECT with
Tc, the Compton camera imaging technique can be expected that radiation exposure deduce to 1/5-1/10. In this study, technetium-95m was produced by the
Mo(p,n)
Tc reaction.