Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Noguchi, Hiroki; Imai, Yoshiyuki; Kamiji, Yu; Kubo, Shinji; Takegami, Hiroaki
Progress in Nuclear Energy, 137, p.103772_1 - 103772_7, 2021/07
Times Cited Count:8 Percentile:71.07(Nuclear Science & Technology)Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Kubo, Shinji
International Journal of Hydrogen Energy, 44(59), p.30832 - 30839, 2019/11
Times Cited Count:11 Percentile:28.61(Chemistry, Physical)Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.
International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07
Times Cited Count:18 Percentile:48.46(Chemistry, Physical)Noguchi, Hiroki; Takegami, Hiroaki; Kasahara, Seiji; Tanaka, Nobuyuki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kubo, Shinji
Energy Procedia, 131, p.113 - 118, 2017/12
Times Cited Count:25 Percentile:99.72(Energy & Fuels)The IS process is the most deeply investigated thermochemical water-splitting hydrogen production cycle. It is in a process engineering stage in JAEA to use industrial materials for components. Important engineering tasks are verification of integrity of the total process and stability of hydrogen production in harsh environment. A test facility using corrosion-resistant materials was constructed. The hydrogen production ability was 100 L/h. Operation tests of each section were conducted to confirm basic functions of reactors and separators, etc. Then, a trial operation for integration of the sections was successfully conducted to produce hydrogen of about 10 L/h for 8 hours.
Myagmarjav, O.; Ikeda, Ayumi*; Tanaka, Nobuyuki; Kubo, Shinji; Nomura, Mikihiro*
International Journal of Hydrogen Energy, 42(9), p.6012 - 6023, 2017/03
Times Cited Count:21 Percentile:49.80(Chemistry, Physical)Tanaka, Nobuyuki; Takegami, Hiroaki; Noguchi, Hiroki; Kamiji, Yu; Iwatsuki, Jin; Aita, Hideki; Kasahara, Seiji; Kubo, Shinji
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1022 - 1028, 2016/11
Japan Atomic Energy Agency (JAEA) has manufactured 100 NL/h-H-scale hydrogen test apparatus. In advance to conduct the continuous operation, we investigated performance of the components in each section of the IS process. In this paper, the results of test of Bunsen and HI concentration sections was shown. In Bunsen reaction, section, we confirmed that outlet gas flow rate included no SO
gas, indicating that all the feed SO
gas was absorbed to the solution in the Bunsen reactor for the Bunsen reaction. On the basis of these results, we evaluated that Bunsen reactor was workable. In HI concentration section, HI concentration was conducted by EED stack. As a result, it can concentrate HI in HIx solution as theoretically predicted on the basis of the previous paper. Based on the results added to that shown in Series II, we have conducted a trial continuous operation and succeeded it for 8 hours.
Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.1029 - 1038, 2016/11
JAEA has been conducting R&D on the IS process for nuclear-powered hydrogen production. We have constructed a 100 NL/h-H-scale test apparatus made of industrial materials. At first, we investigated performance of components in this apparatus. In this paper, the test results of H
SO
decomposition, HI distillation, and HI decomposition were shown. In the H
SO
section, O
production rate is proportional to H
SO
feed rate and SO
decomposition ratio was estimated about 80%. In HI distillation section, we confirmed to acquire a concentrated HI solution over azeotropic HI composition in the condenser. In HI decomposition section, H
could be produced stably by HI decomposer and decomposition ratio was about 18%. The H
SO
decomposer, the HI distillation column, and the HI decomposer were workable. Based on the results added to that shown in Series I, we conducted a trial continuous operation and succeeded it for 8 hours.
Kasahara, Seiji; Kubo, Shinji; Hino, Ryutaro; Onuki, Kaoru; Nomura, Mikihiro*; Nakao, Shinichi*
Proceedings of AIChE 2005 Spring National Meeting (CD-ROM), 8 Pages, 2005/04
Japan Atomic Energy Research Institute (JAERI) has been conducting the research and development on the thermochemical water-splitting IS process for effective hydrogen production using nuclear heat of close to 1000 C that can be supplied from High Temperature Gas-cooled Reactor (HTGR). The activity covers the studies on the process control for the continuous hydrogen production, the process improvements in the HI decomposition procedure and the preliminary screening of corrosion resistant materials of construction. Present status of the study is presented, especially, focusing on the process flowsheeting study concerning the application of membrane process for the HI processing.
Kubo, Shinji; Nakajima, Hayato; Kasahara, Seiji; Higashi, Shunichi*; Masaki, Tomoo*; Abe, Hiroyoshi*; Onuki, Kaoru
Nuclear Engineering and Design, 233(1-3), p.347 - 354, 2004/10
Times Cited Count:190 Percentile:99.52(Nuclear Science & Technology)no abstracts in English
Kubo, Shinji; Kasahara, Seiji; Okuda, Hiroyuki; Terada, Atsuhiko; Tanaka, Nobuyuki; Inaba, Yoshitomo; Ohashi, Hirofumi; Inagaki, Yoshiyuki; Onuki, Kaoru; Hino, Ryutaro
Nuclear Engineering and Design, 233(1-3), p.355 - 362, 2004/10
Times Cited Count:62 Percentile:95.48(Nuclear Science & Technology)no abstracts in English
Ogawa, Masuro; Nishihara, Tetsuo
Nuclear Engineering and Design, 233(1-3), p.5 - 10, 2004/10
Times Cited Count:27 Percentile:82.97(Nuclear Science & Technology)An amount of primary energy supply in Japan is increasing year by year. Much energy such as oil, coal and natural gas is imported so that the self-sufficiency ratio in Japan is only 20 % even if including nuclear energy. An amount of energy consumption is also increasing especially in commercial and resident sector and transport sector. As a result, a large amount of greenhouse gas was emitted into the environment. Nuclear energy plays the important role in energy supply in Japan. Japan Atomic Energy Research Institute (JAERI) has been carried out research and development of a hydrogen production system using a high temperature gas cooled reactor (HTGR). The HTTR project aims at the establishment of the HTGR hydrogen production system. Reactor technology of the HTGR, hydrogen production technology with thermochemical water splitting process and system integration technology between the HTGR and a hydrogen production plant are developed in the HTTR project.
Kasahara, Seiji; Hwang, G.*; Nakajima, Hayato; Choi, H.*; Onuki, Kaoru; Nomura, Mikihiro
Journal of Chemical Engineering of Japan, 36(7), p.887 - 899, 2003/07
Times Cited Count:69 Percentile:88.15(Engineering, Chemical)Thermal efficiency of the IS thermochemical hydrogen production process was evaluated. Sensitivities of operation conditions (HI conversion ratio, pressure and reflux ratio at HI distillation and concentration of HI after EED) and nonidealities of the process (electric energy loss in EED, loss at heat exchangers and loss of waste heat recovery as electricity) were investigated. Concentration of HI after EED had the most significant effect of 13.3 % on thermal efficiency in operation conditions. Nonidealities had importance on thermal efficiency. Thermal efficiency was 56.8 % with optimized operation conditions and no nonidealities.
Shiozawa, Shusaku; Ogawa, Masuro; Inagaki, Yoshiyuki; Onuki, Kaoru; Takeda, Tetsuaki; Nishihara, Tetsuo; Hayashi, Koji; Kubo, Shinji; Inaba, Yoshitomo; Ohashi, Hirofumi
Proceedings of 17th KAIF/KNS Annual Conference, p.557 - 567, 2002/04
The research and development program on nuclear production of hydrogen was started on January in 1997 as a study consigned by Ministry of Education, Culture, Sports, Science and Technology. A hydrogen production system connected to the HTTR is being designed to be able to produce hydrogen of about 4000 m3/h by steam reforming of natural gas, using a nuclear heat of 10 MW supplied by the HTTR. In order to confirm controllability, safety and performance of key components in the HTTR hydrogen production system, the facility for an out-of-pile test was constructed on the scale of approximately 1/30 of the HTTR hydrogen production system. Essential tests are also carried out to obtain detailed data for safety review and development of analytical codes. Other basic studies on the hydrogen production technology of thermochemical water splitting called an iodine sulfur (IS) process, has been carried out for more effective and various uses of nuclear heat. This paper describes the present status and a future plan on the R&D of the HTTR hydrogen production systems in JAERI.
Higashi, Shunichi; Nakajima, Hayato; Kubo, Shinji; Onuki, Kaoru; Inagaki, Yoshiyuki; Shimizu, Saburo; Akino, Norio
Proceedings of the Seminar on HTGR Application and Development, p.164 - 175, 2001/03
no abstracts in English
; Nakajima, Hayato; Onuki, Kaoru; Ikenoya, Kazuhiko*; Shimizu, Saburo
International Journal of Hydrogen Energy, 24(7), p.603 - 612, 1999/00
Times Cited Count:41 Percentile:80.87(Chemistry, Physical)no abstracts in English
Nakajima, Hayato; Ikenoya, Kazuhiko*; Onuki, Kaoru; Shimizu, Saburo
Kagaku Kogaku Rombunshu, 24(2), p.352 - 355, 1998/00
Times Cited Count:52 Percentile:87.12(Engineering, Chemical)no abstracts in English
Ioka, Ikuo; Onuki, Kaoru; Futakawa, Masatoshi; Kuriki, Yoshiro*; ; Nakajima, Hayato; Shimizu, Saburo
Zairyo, 46(9), p.1041 - 1045, 1997/09
no abstracts in English
Onuki, Kaoru; Nakajima, Hayato; Shimizu, Saburo
Kagaku Kogaku Rombunshu, 23(2), p.289 - 291, 1997/00
Times Cited Count:8 Percentile:47.98(Engineering, Chemical)no abstracts in English
Onuki, Kaoru; Nakajima, Hayato; Ioka, Ikuo; Futakawa, Masatoshi; Shimizu, Saburo
JAERI-Review 94-006, 53 Pages, 1994/11
no abstracts in English
Onuki, Kaoru; Shimizu, Saburo; Nakajima, Hayato; Ikezoe, Yasumasa; Sato, Shoichi
International Journal of Hydrogen Energy, 15(2), p.93 - 97, 1990/00
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)no abstracts in English