Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hayashizaki, Kohei; Hirooka, Shun; Yamada, Tadahisa*; Sunaoshi, Takeo*; Murakami, Tatsutoshi; Saito, Kosuke
Ceramics (Internet), 8(1), p.24_1 - 24_12, 2025/03
Ito, Tatsuya; Xu, S.*; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*
Shape Memory and Superelasticity, 9 Pages, 2025/00
Yamashita, Takayuki*; Morooka, Satoshi; Gong, W.; Kawasaki, Takuro; Harjo, S.; Hojo, Tomohiko*; Okitsu, Yoshitaka*; Fujii, Hidetoshi*
ISIJ International, 64(14), p.2051 - 2060, 2024/12
Mao, W.*; Gao, S.*; Gong, W.; Kawasaki, Takuro; Ito, Tatsuya; Harjo, S.; Tsuji, Nobuhiro*
Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10
Times Cited Count:2 Percentile:59.42(Materials Science, Multidisciplinary)Takeda, Takeshi; Shibata, Taiju
JAEA-Review 2024-040, 29 Pages, 2024/09
An important theme of Japan's 6th strategic energy plan is to indicate the energy policy path towards carbon neutrality by 2050. Policy responses for Japan's nuclear energy research and development (R&D) towards 2030 contain the demonstrations of technologies for small modular reactors (SMRs) through international cooperation by 2030. In light of this energy plan, basic policy initiatives over the next 10 years have been compiled to realize Green Transformation (GX), which simultaneously achieves decarbonization and economic growth. Looking overseas, activities of SMR R&D are active internationally, mainly in the US, Canada, Europe, China, and Russia. These activities are not only by heavy industry manufactures and R&D institutes, but also by venture companies. Under these circumstances, the NEA CSNI has gathered an Expert Group on SMRs (EGSMR) to help estimate the safety effects of SMRs. The EGSMR efforts required the submission of responses to several questionnaires whose main purpose was to collect the latest information on the efforts of SMR deployment and research. The first author of this report responded to this based on information from Hitachi-GE Nuclear Energy, Ltd. and Mitsubishi Heavy Industries, Ltd. as well as JAEA. Most of the responses from Japan to the questionnaires are the information that serves as the basis of CSNI Technical Opinion Paper No. 21 (TOP-21). In this report, the Japan's publicly available responses to the questionnaires arranged and additional information are explained, which complements some of the content of the TOP-21. In this manner, the investigation results of R&D related to SMR in Japan, focusing on the EGSMR activities (2022-2023), are summarized. The target of this report is to provide useful information for future discussions on international cooperation concerning SMR as well as nuclear power field human resources development internationally and domestically.
Watanabe, Miku*; Miyamoto, Goro*; Zhang, Y.*; Morooka, Satoshi; Harjo, S.; Kobayashi, Yasuhiro*; Furuhara, Tadashi*
ISIJ International, 64(9), p.1464 - 1476, 2024/07
Times Cited Count:1 Percentile:59.42(Metallurgy & Metallurgical Engineering)Li, L.*; Miyamoto, Goro*; Zhang, Y.*; Li, M.*; Morooka, Satoshi; Oikawa, Katsunari*; Tomota, Yo*; Furuhara, Tadashi*
Journal of Materials Science & Technology, 184, p.221 - 234, 2024/06
Times Cited Count:3 Percentile:30.94(Materials Science, Multidisciplinary)Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; Kawasaki, Takuro; Wang, X.-L.*
Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05
Times Cited Count:6 Percentile:90.71(Materials Science, Multidisciplinary)Li, X.*; Zhu, R.*; Xin, J.*; Luo, M.*; Shang, S.-L.*; Liu, Z.-K.*; Yin, C.*; Funakoshi, Kenichi*; Dippenaar, R. J.*; Higo, Yuji*; et al.
CALPHAD; Computer Coupling of Phase Diagrams and Thermochemistry, 84, p.102641_1 - 102641_6, 2024/03
Times Cited Count:0 Percentile:0.00(Thermodynamics)Okitsu, Takayuki*; Hojo, Tomohiko*; Morooka, Satoshi; Miyamoto, Goro*
Tetsu To Hagane, 110(3), p.260 - 267, 2024/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Yamashita, Takayuki*; Morooka, Satoshi; Gong, W.; Kawasaki, Takuro; Harjo, S.; Hojo, Tomohiko*; Okitsu, Yoshitaka*; Fujii, Hidetoshi*
Tetsu To Hagane, 110(3), p.241 - 251, 2024/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Yang, Z.*; Varanasi, R. S.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
Tetsu To Hagane, 110(3), p.205 - 216, 2024/02
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Sawaguchi, Takahiro*; Yang, Z.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
Tetsu To Hagane, 110(3), p.197 - 204, 2024/02
Times Cited Count:1 Percentile:59.42(Metallurgy & Metallurgical Engineering)Ueji, Rintaro*; Gong, W.; Harjo, S.; Kawasaki, Takuro; Shibata, Akinobu*; Kimura, Yuji*; Inoue, Tadanobu*; Tsuchida, Noriyuki*
ISIJ International, 64(2), p.459 - 465, 2024/01
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Matsuno, Takashi*; Fujita, Taiki*; Matsuda, Tomoko*; Shibayama, Yuki; Hojo, Tomohiko*; Watanabe, Ikumu*
Journal of Materials Processing Technology, 322, p.118174_1 - 118174_16, 2023/12
Times Cited Count:7 Percentile:74.72(Engineering, Industrial)The impact of high stress triaxiality on work hardening in transformation-induced plasticity (TRIP) steel has been widely acknowledged, particularly through measurements of the austenite fraction. Understanding this TRIP behavior is crucial for predicting material fracture in press-forming processes. However, the actual flow stresses under high-stress-triaxiality conditions remain largely undetermined. To address this gap, we developed a new tensile testing method using tiny notched round bars to investigate stress-triaxiality-induced work hardening in TRIP steels. The specimens were analyzed using two-dimensional micrometry to allow finite element analyses to identify the flow stress. Additionally, we conducted in situ tensile tests in which their crystal lattice stresses were monitored using synchrotron X-ray diffraction (XRD) to realize mechanism analyses of the unexpected work-hardening behavior identified by the developed tensile testing method. Our combined approach revealed a mutual, unstable increase in the flow stress and stress triaxiality in the TRIP-aided bainitic ferrite steel, which reduced the hardening exponent coefficients and thus induced a higher stress triaxiality. In contrast, the TRIP-aided martensitic steel exhibited a weakening behavior, characterized by a significant decrease in the hardening exponent coefficients in the case of the sharpest notch. XRD analyses showed that microstructural heterogeneity led to an extraordinarily high hydrostatic stress in the austenite phase, accounting for these contrasting behaviors. This finding challenges the established consensus on TRIP steels and suggests the need for a revised framework for their application in press-forming, taking into account stress-triaxiality conditions.
Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*
Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04
Times Cited Count:42 Percentile:99.20(Materials Science, Multidisciplinary)Sawaguchi, Takahiro*; Tomota, Yo*; Yoshinaka, Fumiyoshi*; Harjo, S.
Acta Materialia, 242, p.118494_1 - 118494_14, 2023/01
Times Cited Count:14 Percentile:76.76(Materials Science, Multidisciplinary)Guo, B.*; Mao, W.; Chong, Y.*; Shibata, Akinobu*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; Tsuji, Nobuhiro*
Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01
Times Cited Count:11 Percentile:71.18(Materials Science, Multidisciplinary)Koyama, Motomichi*; Yamashita, Takayuki*; Morooka, Satoshi; Yang, Z.*; Varanasi, R. S.*; Hojo, Tomohiko*; Kawasaki, Takuro; Harjo, S.
ISIJ International, 62(10), p.2043 - 2053, 2022/10
Times Cited Count:10 Percentile:67.73(Metallurgy & Metallurgical Engineering)Kumagai, Masayoshi*; Akita, Koichi*; Kuroda, Masatoshi*; Harjo, S.
Materials Science & Engineering A, 820, p.141582_1 - 141582_9, 2021/07
Times Cited Count:14 Percentile:63.08(Nanoscience & Nanotechnology)