Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Narukawa, Takafumi; Kondo, Keietsu; Fujimura, Yuki; Kakiuchi, Kazuo; Udagawa, Yutaka; Nemoto, Yoshiyuki
Journal of Nuclear Materials, 582, p.154467_1 - 154467_12, 2023/08
Times Cited Count:3 Percentile:73.09(Materials Science, Multidisciplinary)Furumoto, Kenichiro; Udagawa, Yutaka
Journal of Nuclear Science and Technology, 60(5), p.500 - 511, 2023/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*
Mechanical Engineering Journal (Internet), 7(3), p.19-00548_1 - 19-00548_11, 2020/06
Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(1), p.68 - 78, 2020/01
Times Cited Count:3 Percentile:27.62(Nuclear Science & Technology)Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11
Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.
Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Li, J.*; Jang, S.*
Proceedings of 2018 ANS Winter Meeting and Nuclear Technology Expo; Embedded Topical International Topical Meeting on Advances in Thermal Hydraulics (ATH 2018) (USB Flash Drive), p.1289 - 1294, 2018/11
Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.
Takeda, Takeshi
JAEA-Data/Code 2018-004, 64 Pages, 2018/03
Experiment SB-SG-10 was conducted on November 17, 1992 using LSTF. Experiment simulated recovery actions from multiple steam generator (SG) tube rupture accident in PWR. Primary pressure was kept higher than broken SG secondary-side pressure due to coolant injection from high pressure injection (HPI) system into cold and hot legs even after start of full opening of intact SG relief valve (RV). Full opening of power-operated relief valve (PORV) in pressurizer (PZR) resulted in pressure equalization between primary and broken SG systems as well as PZR liquid level recovery. Broken SG RV opened once after start of intact SG RV full opening. Core was filled with saturated or subcooled liquid through experiment. Significant natural circulation prevailed in intact loop after start of intact SG RV full opening. Significant thermal stratification appeared in hot legs especially during time period of HPI coolant injection into hot legs.
Sugawara, Takanori; Tsujimoto, Kazufumi
JAEA-Research 2017-011, 35 Pages, 2017/10
The construction of Transmutation Physics Experimental Facility (TEF-P) is planned in the J-PARC project. TEF-P is a critical assembly and it will treat minor actinide (MA) fuel in the experiment. The temperature when the air cooling for the TEF-P core would stop was estimated but there were no data to evaluate the soundness of the MA fuel pin. To set a tentative limit temperature for the TEF-P core, cladding tube burst experiment was performed. As the result, the cladding tube burst occurred at 660C as the severest case. Through these results and the estimation of creep rupture time, the tentative limit temperature for the TEF-P core was set to 600
C.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 53(11), p.1758 - 1765, 2016/11
Times Cited Count:10 Percentile:65.18(Nuclear Science & Technology)Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 53(1), p.112 - 122, 2016/01
Times Cited Count:8 Percentile:57.10(Nuclear Science & Technology)Nakamura, Hideo; Kukita, Yutaka; L.S.Ghan*; R.R.Schultz*
Proc. of 1997 Int. Meeting on Advanced Reactors Safety, 0, p.1245 - 1252, 1997/06
no abstracts in English
Watanabe, Tadashi; M.Wang*; Kukita, Yutaka
JAERI-M 93-039, 26 Pages, 1993/03
no abstracts in English
Nakamura, Hideo; Anoda, Yoshinari; Kukita, Yutaka
Proc. of the 6th Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics,Vol. 2; NURETH 6, p.992 - 1001, 1993/00
no abstracts in English
Ueda, Shuzo; ;
Int.J.Press.Vessels Piping, 10, p.465 - 480, 1982/00
Times Cited Count:1 Percentile:61.49(Engineering, Multidisciplinary)no abstracts in English