Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Yano, Yasuhide; Tokoro, Daishiro*; Sugata, Hiromasa*; Kato, Masato*
JAEA-Research 2025-002, 18 Pages, 2025/05
It is advocated as a development target of fast reactors (FRs) to allow for the of use of mixed oxide (MOX) fuels containing minor actinide (MA) separated and recovered from spent fuels with the aim of reducing the volume and toxicity of high-level radioactive waste generated from nuclear reactors. In the development of MAMOX fuels, it is important behavior to understand the thermal properties such as thermal conductivity for fuel design and analysis of the irradiation. However, there are only a few reports on the thermal properties of MA-MOX fuels, and neither the effects of MA contents nor of oxygen non-stoichiometry in MOX fuels on their thermal conductivities have been fully understood. In this study, the thermal conductivities of MOX fuels with up to 15% Am content were measured at near-stoichiometric composition and the relationship between thermal conductivity and Am content was evaluated. Moreover, the thermal conductivities of Am-doped UO fuels were also measured and evaluated by comparison with Am-MOX to evaluate the effect of Am content. The fuel samples used in this study were three types of MOX with a Pu content of 30% and different Am contents (5%, 10%, and 15%), and UO
containing 15% Am. The thermal conductivities of specimens were calculated from the thermal diffusivities measured by the laser flash method, the density of the specimens and, the heat capacity at constant pressure. The oxygen partial pressure during the measurement was controlled at that of the targeted near-stoichiometric composition. The thermal conductivities of all specimens exhibited a decline with increasing temperature and Am content, with a particularly pronounced reduction observed below 1,173 K. The results of the classical phonon scattering model analysis of the measured thermal conductivities showed that the effect of lattice strain due to the Am addition was significant on the thermal resistivity change, and the effect was comparable for both MOX and UO
.
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Fujita, Tatsuya; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 62(2), p.179 - 196, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)This study newly established a direct coupling code system consisting of the nuclear data processing code FRENDY version 2, and the three-dimensional heterogeneous transport code GENESIS (FRENDY-V2/GENESIS) for easy implementation of the random-sampling-based uncertainty quantification considering the implicit effect due to nuclear cross-section (XS) perturbations. The multi-group macroscopic XSs prepared for GENESIS were generated by FRENDY version 2, where the Dancoff factor was calculated by the neutron current method. Then the background XSs were evaluated based on the Carlvik two-term rational approximation. The infinite multiplication factor (k-infinity) and the fission reaction rate distribution in UO and MOX lattice geometries were compared with MVP3 to verify the calculation accuracy of FRENDY-V2/GENESIS. The sensitivity analyses on the discretization conditions such as the ray tracing of the method of characteristics were also carried out. Through several comparisons between FRENDY-V2/GENESIS and MVP3, FRENDY-V2/GENESIS with the SHEM 361-group structure calculates the k-infinity within approximately 50 pcm and the fission reaction rate distribution within approximately 0.1% by the root mean square, respectively. Consequently, the applicability of FRENDY-V2/GENESIS was verified, and FRENDY-V2/GENESIS can be used to discuss the implicit effect due to multi-group XS perturbations.
Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*
Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O
compounds ranging from x equals 0.1 to 0.3 at up to 800
C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800
C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.
Ito, Ayumi*; Yamashita, Susumu; Tasaki, Yudai; Kakiuchi, Kazuo; Kobayashi, Yoshinao*
Journal of Nuclear Science and Technology, 60(4), p.450 - 459, 2023/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Udagawa, Yutaka; Tasaki, Yudai
JAEA-Data/Code 2021-007, 56 Pages, 2021/07
Japan Atomic Energy Agency (JAEA) has released FEMAXI-8 in 2019 as the latest version of the fuel performance code FEMAXI, which has been developed to analyze thermal and mechanical behaviors of a single fuel rod in mainly normal operation conditions and anticipated transient conditions. This report summarizes a newly developed model to analyze intragranular fission gas behaviors considering size distribution of gas bubbles and their dynamics. While the intragranular fission gas behavior models implemented in the previous FEMAXI versions have supported only treating single bubble size for a given fuel element, the new model supports multiple gas groups according to their size and treats their dynamic behaviors, making the code more versatile. The model was first implemented as a general module that takes arbitrary number of bubble groups and spatial mesh division for a given fuel grain system. An interface module to connect the model to FEMAXI-8 was then developed so that it works as a 2 bubble groups model, which is the minimum configuration of the multi-grouped model to be operated with FEMAXI-8 at the minimum calculation cost. FEMAXI-8 with the new intragranular model was subjected to a systematic validation calculation against 144 irradiation test cases and recommended values for model parameters were determined so that the code makes reasonable predictions in terms of fuel center temperature, fission gas release, etc. under steady-state and power ramp conditions.
Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio
JAEA-Data/Code 2019-018, 22 Pages, 2020/01
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.
Udagawa, Yutaka; Amaya, Masaki
Journal of Nuclear Science and Technology, 56(6), p.461 - 470, 2019/06
Times Cited Count:12 Percentile:69.57(Nuclear Science & Technology)no abstracts in English
Mori, Takamasa; Kojima, Kensuke*; Suyama, Kenya
JAEA-Research 2018-010, 57 Pages, 2019/02
In order to estimate applicability of the statistical geometry model (STGM) of MVP/GMVP, a parametric study in infinite geometry and criticality safety analyses for direct disposal of spent fuel in simple finite geometry have been carried out by using the MVP Monte Carlo code. It has been found that calculations with STGM for larger fuel spheres give larger thermal utilization factors and larger infinite multiplication factors compared with explicit random models in the range of fuel sphere packing fraction between 6.5 % and 63.3 %. Substantial differences are not observed between the results with two nearest neighbor distributions (NNDs); that given by the MCRDF code and the analytical expression based on a statistically uniform distribution. It is inferred that the overestimation by STGM is caused by the facts that STGM cannot take account of the surroundings of each neutron, whether a fuel sphere rich region or a water moderator rich one, because STGM always uses an NND averaged over such surroundings and that STGM, therefore, cannot take the effect of consecutive scatterings in the water moderator into account.
Udagawa, Yutaka; Yamauchi, Akihiro*; Kitano, Koji*; Amaya, Masaki
JAEA-Data/Code 2018-016, 79 Pages, 2019/01
FEMAXI-8 is the latest version of the fuel performance code FEMAXI developed by JAEA. A systematic validation work has been achieved against 144 irradiation test cases, after many efforts have been made, in development of new models, improvements in existing models and the code structure, bug-fixes, construction of irradiation-tests database and other infrastructures.
Yomogida, Takumi; Esaka, Fumitaka; Magara, Masaaki
Analytical Methods, 9(44), p.6261 - 6266, 2017/11
Times Cited Count:11 Percentile:58.49(Chemistry, Analytical)A combination of micro-sampling, micro-Raman spectroscopy (MRS), and secondary ion mass spectrometry (SIMS) was applied to the characterization of individual uranium particles. Reference particles with UO
(NBL CRM U010) and UO
were identified by scanning electron microscopy combined with energy dispersive X-ray detection (SEM-EDX) and transferred onto grassy carbon substrates by micro-sampling. The crystalline phases of the reference particles with diameters ranging from 1
m to 5
m were determined non-destructively by using MRS thanks to the optimization of laser power at the measurement. Isotope ratios were also determined with SIMS after the MRS analysis and were consistent with values in the literature. These results indicate that chemical forms and isotope ratios of individual uranium particles as small as 1
m can be analyzed efficiently by using the proposed method.
Kato, Masato; Nakamura, Hiroki; Watanabe, Masashi; Matsumoto, Taku; Machida, Masahiko
Defect and Diffusion Forum, 375, p.57 - 70, 2017/05
The basic properties of PuO were reviewed, and the equilibrium defects in PuO
were evaluated from the experimental data of the oxygen potential and electrical conductivity as well as the Ab-initio calculation results. Consistency among various properties was confirmed, and the mechanistic models for thermal property representations were derived.
Nakamichi, Shinya; Hirooka, Shun; Sunaoshi, Takeo*; Kato, Masato; Nelson, A.*; McClellan, K.*
Transactions of the American Nuclear Society, 113(1), p.617 - 618, 2015/10
Cerium dioxide has been used as a surrogate material for plutonium dioxide. Dorr et al reported the use of hyper-stoichiometric conditions causes the start of shrinkage of (U,Ce)O at low temperature compared with the sintering in reducing atmosphere. However, the precise stoichiometry of the samples investigated was not controlled or otherwise monitored, preventing any quantitative conclusions regarding the similarities or differences between (U,Ce)O
and (U,Pu)O
. The motivation for the present work is therefore to compare the sintering behavior of MOX and the (U,Ce)O
MOX surrogates under controlled atmospheres to assess the role of oxygen defects on densification in both systems.
Sakamura, Yoshiharu*; Inoue, Tadashi*; Iwai, Takashi; Moriyama, Hirotake*
Journal of Nuclear Materials, 340(1), p.39 - 51, 2005/04
Times Cited Count:47 Percentile:92.91(Materials Science, Multidisciplinary)A new chlorination method using ZrCl in a molten salt has been investigated for the pyrometallurgical reprocessing of spent oxide fuels. UO
, PuO
and rare earth oxides(La
O
, CeO
, Nd
O
and Y
O
) were allowed to react with ZrCl
in a LiCl-KCl eutectic salt at 500
C to give a metal chloride solution and a precipitate of ZrO
. By keeping the system quite still, the solution settled so that the ZrO
precipitate could be separated.
Yasuda, Ryo; Matsubayashi, Masahito; Nakata, Masahito; Harada, Katsuya; Amano, Hidetoshi; Sasajima, Fumio; Nishi, Masahiro; Horiguchi, Yoji
IEEE Transactions on Nuclear Science, 52(1), p.313 - 316, 2005/02
Times Cited Count:15 Percentile:68.77(Engineering, Electrical & Electronic)Neutron radiography is useful to inspect macroscopic change in nuclear fuels before and after irradiation. We have been investigated the practicality of neutron imaging plate and neutron CT methods for the inspection of the spent fuels. A fresh UO2 fuel rod was examined by those methods. The test results of those samples are available to develop the system of those methods for the spent fuels and to determine the specifications of the system. Some good images of those samples are obtained by those examinations. The shape of the pellets in the fuel rod is clearly recognized in the image. Those images are analyzed to estimate the size of some parts in the fuel pellets.
Okumura, Keisuke; Oki, Shigeo*; Yamamoto, Munenari*; Matsumoto, Hideki*; Ando, Yoshihira*; Tsujimoto, Kazufumi; Sasahara, Akihiro*; Katakura, Junichi; Matsumura, Tetsuo*; Aoyama, Takafumi*; et al.
JAERI-Research 2004-025, 154 Pages, 2005/01
This report summarizes the activity (FY2000-2003) of Working Group (WG) on Evaluation of Nuclide Generation and Depletion under Subcommittee on Nuclear Fuel Cycle of Japanese Nuclear Data Committee. In the WG, analyses of Post Irradiation Examinations have been carried out for UO and MOX fuels irradiated in PWRs, BWRs and FBRs, and for actinide samples irradiated in fast reactors, by using ORIGEN or more detailed calculation codes with their libraries based on JENDL-3.2, JENDL-3.3 and other foreign nuclear data files. From these results, current prediction accuracy and problems for evaluation of nuclide generation and depletion are discussed. Furthermore, this report covers other products of our activity; development of the ORIGEN libraries for PWR, BWR and FBR based on JENDL-3.3, study on introduction of neutron spectrum index to ORIGEN calculations, and results of questionnaire survey on desirable accuracy of ORIGEN calculations.
Onozawa, Atsushi; Kushida, Teruo; Kanazawa, Hiroyuki
JAERI-Tech 2004-061, 39 Pages, 2004/11
The swelling observed on irradiated fuels is caused by the accumulation of fission products and irradiation defects. The swelling ratio is changed along with radius region in the pellet due to burn up difference caused by that of neutron flux. To investigate the swelling behavior at the small area of the pellet, it is needed to measure the density of fuel fragments picked from an irradiated pellet. In this circumstance, once-through type densitometer was developed to measure the density of the small irradiated specimen precisely and to handle the samples easily with remote control systems. Several kinds of metallic and ceramic standard specimens are prepared to investigate the dependence of the sample weight, density and porosity on the accuracy. The results of characteristic examination using these specimens indicate that this densitometer has enough accuracy. In addition, some parts of this apparatus are controlled by motor drive units, which made it possible to measure the density full-automatically.
Sakai, Hironori; Kato, Harukazu; Tokunaga, Yo; Kambe, Shinsaku; Walstedt, R. E.; Nakamura, Akio; Tateiwa, Naoyuki*; Kobayashi, Tatsuo*
Journal of Magnetism and Magnetic Materials, 272-276(Suppl.), p.e413 - e414, 2004/05
Times Cited Count:3 Percentile:19.18(Materials Science, Multidisciplinary)The d.c. magnetization of insulating UO under high pressure up to about 1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism was found to appear at low pressure (about 0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries.
Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo
JAERI-Tech 2003-008, 32 Pages, 2003/03
no abstracts in English
Albiol, T.*; Serizawa, Hiroyuki; Arai, Yasuo
Journal of Nuclear Science and Technology, 39(Suppl.3), p.834 - 837, 2002/11
no abstracts in English