Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Estimation of influence of implicit effect due to multi-group cross-section perturbations on uncertainty analysis in PWR-UO$$_{2}$$ and -MOX lattice calculations

Fujita, Tatsuya

Journal of Nuclear Science and Technology, 9 Pages, 2025/03

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

This study estimated the influence of implicit effect on the k-infinity uncertainty in the PWR-UO$$_{2}$$ and -MOX fuel lattice geometries. Firstly, the preliminary investigation was performed, where the influence of implicit effect was roughly estimated based on the sandwich formula using the cross-section (XS) covariance matrix and the sensitivity coefficient. It was confirmed that the influence of implicit effect became large in the fission and (n,$$gamma$$) reactions of heavy nuclides and the change of this dependence was small for the burnup of UO$$_{2}$$ and MOX fuel assemblies. Then, focussing on the heavy nuclides, the influence of implicit effect was compared under several energy group conditions of the XS covariance matrix and neutron transport calculation. For $$^{239}$$Pu and $$^{240}$$Pu, the noticeable influence of implicit effect was observed in MOX fuel pin-cell geometry. However, increasing the number of energy groups for neutron transport calculations and that of the XS covariance matrix can reduce the influence of implicit effect. Consequently, by appropriately setting the number of energy groups for neutron transport calculations and that of the XS covariance matrix, it became practically possible not to explicitly consider the implicit effect during the random sampling.

Journal Articles

Uncertainty quantification for severe-accident reactor modelling; Results and conclusions of the MUSA reactor applications work package

Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.

Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02

 Times Cited Count:6 Percentile:94.85(Nuclear Science & Technology)

Journal Articles

Enhancement of random sampling by a combined approach of control variates and Latin hypercube sampling for uncertainty quantification in light water reactor lattice calculations

Fujita, Tatsuya

Journal of Nuclear Science and Technology, 62(5), p.470 - 479, 2025/01

This study confirmed the efficiency of a combined approach of the control variates (CV) and the Latin hypercube sampling (LHS), which enhanced the random-sampling-based uncertainty quantification due to cross-section (XS) covariance data, by considering the effect of statistical variation and also performed the sensitivity analyses on the influence due to the selection of alternative parameter to apply CV. The convergence performance for the uncertainty of infinite multiplication factor (k-infinity) during the random sampling was compared between several efficient sampling techniques such as the antithetic sampling (AS), LHS, CV, and the combined approaches of them in the PWR-UO$$_{2}$$ fuel assembly geometry. The k-infinity uncertainty was evaluated by statistically processing several times Serpent2 calculations using perturbed ACE-formatted XS files based on ENDF/B-VIII.0. CV+LHS was more efficient than AS, LHS, and CV+AS. In addition, sensitivity analyses were performed to select alternative parameters used in CV. The 3$$times$$3 mini fuel lattice calculation can improve the efficiency of CV+LHS. The reason was qualitatively considered that this calculation can capture the influence of XS covariance data for Gd isotopes. Consequently, the applicability of CV+LHS for the improvement of convergence performance to evaluate the k-infinity uncertainty during the random sampling was confirmed.

Journal Articles

Cutting edge of application of AI technology to PRA, 3; Advancement of approaches to dynamic PRA and uncertainty quantification using machine learning

Zheng, X.; Tamaki, Hitoshi; Shibamoto, Yasuteru; Maruyama, Yu

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 66(11), p.565 - 569, 2024/11

no abstracts in English

Journal Articles

Quantifying uncertainty induced by scattering angle distribution using maximum entropy method

Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*

Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09

 Times Cited Count:1 Percentile:51.66(Nuclear Science & Technology)

Journal Articles

A Comparative study of efficient sampling techniques for uncertainty quantification due to cross-section covariance data

Fujita, Tatsuya

Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.718 - 727, 2024/04

The convergence process of the k-infinity uncertainty during random-sampling-based uncertainty quantification was compared between several efficient sampling techniques. The k-infinity uncertainty was evaluated by statistically processing several times of SERPENT 2.2.1 calculations using perturbed ACE files based on JENDL-5 cross-section covariance data. The antithetic sampling (AS), the Latin hypercube sampling (LHS), the control variates (CV), and the combination approaches of them were focused on in the present paper. In PWR-UO$$_{2}$$ fuel assembly geometry without the nuclide depletion, as discussed in past studies, AS and LHS showed higher efficient convergence than nominal sampling without any efficient sampling techniques. In terms of CV, though a stand-alone application did not have a large impact on the k-infinity uncertainty convergence, its performance was improved in combination with AS, as discussed in the past study. In addition, a new combined approach of LHS and CV (CV+LHS) was proposed in the present paper. CV+LHS improved the k-infinity uncertainty convergence and was more efficient than CV+AS. The main reason for this improvement was that the convergence for the mean value of alternative parameters in CV was enhanced by applying LHS. Consequently, this study proposed the new combined approach of CV+LHS and confirmed its efficiency performance for the random-sampling-based uncertainty quantification in the PWR-UO$$_{2}$$ fuel assembly geometry. The applicability of CV+LHS for the nuclide-depletion calculations will be confirmed in future studies.

Journal Articles

Hierarchical Bayesian modeling to quantify fracture limit uncertainty of high-burnup advanced fuel cladding tubes under loss-of-coolant accident conditions

Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka

Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09

 Times Cited Count:1 Percentile:23.64(Nuclear Science & Technology)

Journal Articles

Uncertainty quantification of seismic response of nuclear reactor building using a three-dimensional finite element model

Choi, B.; Nishida, Akemi; Li, Y.; Takada, Tsuyoshi

Earthquake Engineering and Resilience (Internet), 1(4), p.427 - 439, 2022/12

no abstracts in English

Journal Articles

Hierarchical Bayes model to quantify fracture limit uncertainty of high-burnup advanced fuel cladding tubes under LOCA conditions

Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka

Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12

Journal Articles

Status of the uncertainty quantification for severe accident sequences of different NPP-designs in the frame of the H-2020 project MUSA

Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda$"i$, M.*; et al.

Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05

Journal Articles

Great achievements of M. Salvatores for nuclear data adjustment study with use of integral experiments

Yokoyama, Kenji; Ishikawa, Makoto*

Annals of Nuclear Energy, 154, p.108100_1 - 108100_11, 2021/05

 Times Cited Count:1 Percentile:9.64(Nuclear Science & Technology)

In the design of innovative nuclear reactors such as fast reactors, the improvement of the prediction accuracies for neutronics properties is an important task. The nuclear data adjustment is a promising methodology for this issue. The idea of the nuclear data adjustment was first proposed in 1964. Toward its practical application, however, a great deal of study has been conducted over a long time. While it took about 10 years to establish the theoretical formulation, the research and development for its practical application has been conducted for more than half a century. Researches in this field are still active, and the fact suggests that the improvement of the prediction accuracies is indispensable for the development of new types of nuclear reactors. Massimo Salvatores, who passed away in March 2020, was one of the first proposers to develop the nuclear data adjustment technique, as well as one of the great contributors to its practical application. Reviewing his long-time works in this area is almost the same as reviewing the history of the nuclear data adjustment methodology. The authors intend that this review would suggest what should be done in the future toward the next development in this area. The present review consists of two parts: a) the establishment of the nuclear data adjustment methodology and b) the achievements related to practical applications. Furthermore, the former is divided into two aspects: the study on the nuclear data adjustment theory and the numerical solution for sensitivity coefficient that is requisite for the nuclear data adjustment. The latter is separated to three categories: the use of integral experimental data, the uncertainty quantification and design target accuracy evaluation, and the promotion of nuclear data covariance development.

Journal Articles

Uncertainty quantification of seismic response of reactor building considering different modeling methods

Choi, B.; Nishida, Akemi; Muramatsu, Ken*; Itoi, Tatsuya*; Takada, Tsuyoshi*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

After the 2011 Fukushima accident, the seismic regulation for Nuclear Power Plants (NPP) have been strengthened to take countermeasures against accidents beyond design basis conditions. Therefore, the importance of seismic probabilistic risk assessment has drawn much attention. Uncertainty quantification is a very important issue in the fragility assessment for NPP buildings. In this study, the authors focus on the epistemic uncertainty that can be reduced, and aims to clarify the effects due to different modeling methods of NPP buildings on seismic response results. As the first step of this study, the authors compared the effects on seismic response using two kinds of modeling methods. In order to evaluate the effect, seismic response analysis was performed on two types of building models; the three dimensional finite element model and the conventional lumped mass with sway-rocking model. As the input ground motion, the authors adopted 200 types of simulated seismic ground motions generated by fault rupture models with stochastic seismic source characteristics. For the uncertainty quantification, the authors conducted statistical analyses of the effects on seismic response results of two kinds of modeling methods on building response for each input ground motions, and quantitatively evaluated the uncertainty of response considering different modeling methods. In particular, the difference in modeling methods clearly appeared near the openings of the floors and walls. The authors also report on the knowledge about these three-dimensional effects in seismic response analysis.

Journal Articles

Uncertainty quantification of fracture boundary of pre-hydrided Zircaloy-4 cladding tube under LOCA conditions

Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki

Nuclear Engineering and Design, 331, p.147 - 152, 2018/05

 Times Cited Count:3 Percentile:25.46(Nuclear Science & Technology)

Journal Articles

Dimension-reduced cross-section adjustment method based on minimum variance unbiased estimation

Yokoyama, Kenji; Yamamoto, Akio*; Kitada, Takanori*

Journal of Nuclear Science and Technology, 55(3), p.319 - 334, 2018/03

 Times Cited Count:8 Percentile:56.25(Nuclear Science & Technology)

A new formulation of the cross-section adjustment methodology with the dimensionality reduction technique has been derived. This new formulation is proposed as the dimension reduced cross-section adjustment method (DRCA). Since the derivation of DRCA is based on the minimum variance unbiased estimation (MVUE), an assumption of normal distribution is not required. The result of DRCA depends on a user-defined matrix that determines the dimension reduced feature subspace. We have examine three variations of DRCA, namely DRCA1, DRCA2, and DRCA3. Mathematical investigation and numerical verification have revealed that DRCA2 is equivalent to the currently widely used cross-section adjustment method. Moreover, DRCA3 is found to be identical to the cross-section adjustment method based on MVUE, which has been proposed in the previous study.

Journal Articles

Recent statistical topics of nuclear material inventory verification

Kikuchi, Masahiro*; Suzuki, Mitsutoshi

Wiley StatsRef; Statistics Reference Online (Internet), 7 Pages, 2018/03

A near-real-time accountancy (NRTA) as a timely statistical test method for nuclear material inventory verification in international safeguards has a unique feature and development history, and it has been maintained and updated in large nuclear facilities in Japan. A recent discussion on approaches of measurement uncertainty may have impacted on the decision criteria of NRTA because its development origin dates back to the 1970's and derived from the conventional random and systematic error model. In this article, we will show the overview associated with this issue.

Journal Articles

Model verification and validation procedure for a neutronics design methodology of next generation fast reactors

Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Maruyama, Shuhei; Yokoyama, Kenji; Sugino, Kazuteru; Nagaya, Yasunobu; Oki, Shigeo

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

Oral presentation

Model V&V and UQ procedure for the neutronics design methodology for the next generation fast reactor, 1; Outline of model V&V and UQ procedure

Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Oki, Shigeo

no journal, , 

no abstracts in English

Oral presentation

Oral presentation

20 (Records 1-20 displayed on this page)
  • 1