Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.
Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02
Times Cited Count:0Maruyama, Shuhei; Yamamoto, Akio*; Endo, Tomohiro*
Annals of Nuclear Energy, 205, p.110591_1 - 110591_13, 2024/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Fujita, Tatsuya
Proceedings of Best Estimate Plus Uncertainty International Conference (BEPU 2024) (Internet), 14 Pages, 2024/05
The uncertainty analysis of PWR depletion test problem on the OECD/NEA/NSC LWR-UAM benchmark Phase II based on JENDL-5 was performed as a preliminary investigation. The random sampling was used to quantify the uncertainty of k-infinity and nuclide inventories, the cross section (XS), the fission product yield (FPY), the decay constant, and the decay branch ratio were randomly perturbed, and several times of SERPENT 2.2.1 calculations were performed. XSs in the ACE file were perturbed by the ACE file perturbation tool using FRENDY with the 56-group covariance matrix generated by NJOY2016.72. The perturbation quantity of independent FPY was evaluated using the FPY covariance matrix prepared in JENDL-5, and the perturbed cumulative FPY was reconstructed based on the relationship between the independent and cumulative FPYs. The decay constant was independently perturbed for each nuclide. To perturb the decay branch ratios, the covariance matrix was generated by applying the generalized least square method and randomly perturbed based on this covariance matrix in the same manner as the independent FPY. In general, the influence due to decay data was an order of magnitude smaller than the influences due to XS and FPY uncertainties. For the uncertainty of k-infinity and transuranic nuclide inventories, the influence due to XS uncertainty was dominant, and that due to FPY and decay data uncertainties was one or a few orders of magnitude smaller. On the other hand, for the uncertainty of FP nuclide inventories, the influence due to FPY uncertainty was almost the same or larger than that due to XS uncertainty. It was also confirmed that the influence due to either XS or FPY uncertainty became different for each FP nuclide. In future studies, the influence due to XS uncertainty on FP nuclides will be discussed because it was not prepared in JENDL-5 and not considered in the present paper.
Fujita, Tatsuya
Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.718 - 727, 2024/04
The convergence process of the k-infinity uncertainty during random-sampling-based uncertainty quantification was compared between several efficient sampling techniques. The k-infinity uncertainty was evaluated by statistically processing several times of SERPENT 2.2.1 calculations using perturbed ACE files based on JENDL-5 cross-section covariance data. The antithetic sampling (AS), the Latin hypercube sampling (LHS), the control variates (CV), and the combination approaches of them were focused on in the present paper. In PWR-UO fuel assembly geometry without the nuclide depletion, as discussed in past studies, AS and LHS showed higher efficient convergence than nominal sampling without any efficient sampling techniques. In terms of CV, though a stand-alone application did not have a large impact on the k-infinity uncertainty convergence, its performance was improved in combination with AS, as discussed in the past study. In addition, a new combined approach of LHS and CV (CV+LHS) was proposed in the present paper. CV+LHS improved the k-infinity uncertainty convergence and was more efficient than CV+AS. The main reason for this improvement was that the convergence for the mean value of alternative parameters in CV was enhanced by applying LHS. Consequently, this study proposed the new combined approach of CV+LHS and confirmed its efficiency performance for the random-sampling-based uncertainty quantification in the PWR-UO fuel assembly geometry. The applicability of CV+LHS for the nuclide-depletion calculations will be confirmed in future studies.
Tada, Kenichi; Endo, Tomohiro*
Journal of Nuclear Science and Technology, 60(11), p.1397 - 1405, 2023/11
Times Cited Count:1 Percentile:41.04(Nuclear Science & Technology)The probability table method is a well-known method for addressing self-shielding effects in the unresolved resonance region. A long computational time is required to generate the probability table. The effective way to reduce the generation time of the probability table is the reduction of the number of ladders. The purpose of this study is the estimation of the optimal number of ladders using the statistical uncertainty in the probability table. To this end, the statistical uncertainty quantification method of the probability table was developed and the convergence behavior of the statistical uncertainty was investigated. The product of the probability table and the average cross section was considered the target of the statistical uncertainty. The convergence rate was affected by the average level spacing and reduced neutron width. The generation time of the probability table was less than half when the input parameter was changed from the number of ladders to the tolerance value.
Maruyama, Shuhei; Endo, Tomohiro*; Yamamoto, Akio*
Journal of Nuclear Science and Technology, 60(11), p.1372 - 1385, 2023/11
Times Cited Count:1 Percentile:41.04(Nuclear Science & Technology)Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Nuclear Engineering and Design, 411, p.112443_1 - 112443_12, 2023/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Sawada, Atsushi; Sakamoto, Kazuhiko*; Watahiki, Takanori*; Imai, Hisashi*
SKB P-17-06, 154 Pages, 2023/08
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 60(4), p.359 - 373, 2023/04
Times Cited Count:8 Percentile:83.23(Nuclear Science & Technology)Probabilistic risk assessment (PRA) is an essential approach to improving the safety of nuclear power plants. However, this method includes certain difficulties, such as modeling of combinations of multiple hazards. Seismic-induced flooding scenario includes several core damage sequences, i.e., core damage caused by earthquake, flooding, and combination of earthquake and flooding. The flooding fragility is time-dependent as the flooding water propagates from the water source such as a tank to compartments. Therefore, dynamic PRA should be used to perform a realistic risk analysis and quantification. This study analyzed the risk of seismic-induced flooding events by coupling seismic, flooding, and thermal-hydraulics simulations, considering the dependency between multiple hazards explicitly. For requirements of safety improvement, especially in light of the Fukushima Daiichi Nuclear Power Plant accident, sensitivity analysis was performed on the seismic capacity of systems, and the effectiveness of alternative steam generator injection by a portable pump was estimated. We demonstrate the use of this simulation-based dynamic PRA methodology to evaluate the risk induced by a combination of hazards.
Choi, B.; Nishida, Akemi; Li, Y.; Takada, Tsuyoshi
Earthquake Engineering and Resilience (Internet), 1(4), p.427 - 439, 2022/12
no abstracts in English
Narukawa, Takafumi; Hamaguchi, Shusuke*; Takata, Takashi*; Udagawa, Yutaka
Proceedings of Asian Symposium on Risk Assessment and Management 2022 (ASRAM 2022) (Internet), 11 Pages, 2022/12
Brumm, S.*; Gabrielli, F.*; Sanchez-Espinoza, V.*; Groudev, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; Bocanegra, R.*; Herranz, L. E.*; Berda, M.*; et al.
Proceedings of 10th European Review Meeting on Severe Accident Research (ERMSAR 2022) (Internet), 13 Pages, 2022/05
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 59(3), p.357 - 367, 2022/03
Times Cited Count:6 Percentile:56.19(Nuclear Science & Technology)Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.
Narukawa, Takafumi
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(11), p.780 - 785, 2021/11
no abstracts in English
Pyeon, C. H.*; Yamanaka, Masao*; Fukushima, Masahiro
Nuclear Science and Engineering, 195(8), p.877 - 889, 2021/08
Times Cited Count:6 Percentile:63.12(Nuclear Science & Technology)Uncertainty quantification of lead (Pb) and bismuth (Bi) sample reactivity worth is numerically determined using the SCALE6.2 code system and experimental results obtained from the solid-moderated and solid-reflected core at the Kyoto University Critical Assembly (KUCA) to demonstrate the sensitivity coefficients of aluminum (Al) and Bi scattering reactions. From the results of the numerical analyses, the impact of Al and Bi scattering cross sections obtained using SCALE6.2/TSAR is disclosed on the Bi sample reactivity worth using Al reference and Bi test samples, although the uncertainty itself is small in the Bi sample reactivity worth.
Yokoyama, Kenji; Ishikawa, Makoto*
Annals of Nuclear Energy, 154, p.108100_1 - 108100_11, 2021/05
Times Cited Count:1 Percentile:12.48(Nuclear Science & Technology)In the design of innovative nuclear reactors such as fast reactors, the improvement of the prediction accuracies for neutronics properties is an important task. The nuclear data adjustment is a promising methodology for this issue. The idea of the nuclear data adjustment was first proposed in 1964. Toward its practical application, however, a great deal of study has been conducted over a long time. While it took about 10 years to establish the theoretical formulation, the research and development for its practical application has been conducted for more than half a century. Researches in this field are still active, and the fact suggests that the improvement of the prediction accuracies is indispensable for the development of new types of nuclear reactors. Massimo Salvatores, who passed away in March 2020, was one of the first proposers to develop the nuclear data adjustment technique, as well as one of the great contributors to its practical application. Reviewing his long-time works in this area is almost the same as reviewing the history of the nuclear data adjustment methodology. The authors intend that this review would suggest what should be done in the future toward the next development in this area. The present review consists of two parts: a) the establishment of the nuclear data adjustment methodology and b) the achievements related to practical applications. Furthermore, the former is divided into two aspects: the study on the nuclear data adjustment theory and the numerical solution for sensitivity coefficient that is requisite for the nuclear data adjustment. The latter is separated to three categories: the use of integral experimental data, the uncertainty quantification and design target accuracy evaluation, and the promotion of nuclear data covariance development.
Sugiyama, Daisuke*; Nakabayashi, Ryo*; Tanaka, Shingo*; Koma, Yoshikazu; Takahatake, Yoko
Journal of Nuclear Science and Technology, 58(4), p.493 - 506, 2021/04
Times Cited Count:2 Percentile:24.93(Nuclear Science & Technology)Ikenoue, Tsubasa; Shimadera, Hikari*; Kondo, Akira*
Journal of Environmental Radioactivity, 225, p.106452_1 - 106452_12, 2020/12
Times Cited Count:5 Percentile:21.10(Environmental Sciences)This study focused on the uncertainty of the factors of the Universal Soil Loss Equation (USLE) and evaluated its impacts on the environmental fate of Cs simulated by a radiocesium transport model in the Abukuma River basin. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). The simulation results showed total suspended sediment and Cs outflows were the most sensitive to C and P among the all factors. Therefore, land cover and soil erosion prevention act have the great impact on outflow of suspended sediment and Cs. Focusing on land use, the outflow rates of Cs from the forest areas, croplands, and undisturbed paddy fields were large. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of Cs.
Tanaka, Yoichi; Tamaki, Hitoshi; Zheng, X.; Sugiyama, Tomoyuki
Proceedings of 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL 2020 and PSAM-15) (Internet), p.2195 - 2201, 2020/11
Hashimoto, Shintaro; Sato, Tatsuhiko
EPJ Web of Conferences, 239, p.03015_1 - 03015_4, 2020/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Particle transport simulation codes based on the Monte Carlo technique have been successfully applied to shielding calculations in accelerator facilities. Estimation of not only statistical uncertainties, which depend on the number of trials, but also systemic uncertainties, which are caused by uncertainty of total cross section models, is required to confirm the reliability of the simulation results. We evaluated unclear quantities of internal parameters included in the total cross section model by the KALMAN code, which is based on the least squares technique, comparing with experimental data of the total cross section. The uncertainties in the total cross sections obtained by the new model are comparable to the experimental errors. In the present study, the systematic uncertainty included in the simulation results can be estimated by performing the transport calculations with variation of the internal parameters within their unclear quantities.