Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 356

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Decommissioning of the Uranium Enrichment Laboratory

Kokusen, Junya; Akasaka, Shingo*; Shimizu, Osamu; Kanazawa, Hiroyuki; Honda, Junichi; Harada, Katsuya; Okamoto, Hisato

JAEA-Technology 2020-011, 70 Pages, 2020/10


The Uranium Enrichment Laboratory in the Japan Atomic Energy Agency (JAEA) was constructed in 1972 for the purpose of uranium enrichment research. The smoke emitting accident on 1989 and the fire accident on 1997 had been happened in this facility. The research on uranium enrichment was completed in JFY1998. The decommissioning work was started including the transfer of the nuclear fuel material to the other facility in JFY2012. The decommissioning work was completed in JFY2019 which are consisting of removing the hood, dismantlement of wall and ceiling with contamination caused by fire accident. The releasing the controlled area was performed after the confirmation of any contamination is not remained in the target area. The radioactive waste was generated while decommissioning, burnable and non-flammable are 1.7t and 69.5t respectively. The Laboratory will be used as a general facility for cold experiments.

JAEA Reports

Basis for handling of nuclear fuel materials (Second edition)

Task Force on Writing Textbook of Nuclear Fuel Materials

JAEA-Review 2020-007, 165 Pages, 2020/07


The present textbook was written by Task Force on Writing Textbook of Nuclear Fuel Materials at the Nuclear Science Research Institute in order to improve technological abilities of engineers and researchers who handle nuclear fuel materials. The taskforce consists of young and middle class engineers each having certification for chief engineer of nuclear fuel. The present textbook mainly deals with uranium and plutonium, and shows their nuclear properties, physical and chemical properties, and radiation effects on materials and human body. It also presents basic matters for safety handling of nuclear fuel materials, such as handling of nuclear fuel materials with hood and glovebox, important points in storage and transportation of nuclear fuel materials, radioactive waste management, radiation safety management, and emergency management. Furthermore, incident cases at domestic and foreign nuclear fuel materials facilities are compiled to learn from the past.

Journal Articles

Clearance measurement for general steel waste

Yokoyama, Kaoru; Ohashi, Yusuke

Annals of Nuclear Energy, 141, p.107299_1 - 107299_5, 2020/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

A large amount of general steel waste is generated during decommissioning and dismantling of nuclear facilities. Very low-contaminated radioactive waste, whose radioactivity is below clearance level, generated from the demolition process may be reused for general use. We examined the feasibility of the clearance verification system for uranium waste. The relative error of uranium determination was within 30% for 1 g of uranium when measuring steel materials (angle bar, channel steel, pipe steel, square steel tube, fragments of metal tube).

Journal Articles

Activity report of the task group of radiation protection about wastes containing natural radioactive nuclides

Saito, Tatsuo; Kobayashi, Shinichi*; Zaitsu, Tomohisa*; Shimo, Michikuni*; Fumoto, Hiromichi*

Hoken Butsuri (Internet), 55(2), p.86 - 91, 2020/06

Safety cases for disposal of uranium bearing waste and NORM with uranium has not yet been fully developed in Japan, because of safety assessment of extraordinary long timespan and uncertainty in unexpected incidents with uncompleted radon impact evaluation measures arising from uranium waste disposal facility in far future. Our task group of radiation protection for wastes with natural radioactive nuclides studied some safety cases with disposal of uranium bearing waste and NORM in terms of nuclides, U-235, U-238 and their progenies, and comprehensively discussed the current state of their disposal in comparison to the ideas of international organizations such as ICRP and IAEA. We developed our ideas for long term uncertainty and radon with the knowledge of experts in each related area of direction, repeating discussions, focusing out the orientation of each directions, and outlined the recommendations with our suggestions of solving important issues in the future to be addressed.

Journal Articles

Chemical forms of uranium evaluated by thermodynamic calculation associated with distribution of core materials in the damaged reactor pressure vessel

Ikeuchi, Hirotomo; Yano, Kimihiko; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 57(6), p.704 - 718, 2020/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

To suggest efficient process of the fuel debris treatment after the retrieval from the Fukushima Daiichi Nuclear Power Plant (1F), thorough investigation is indispensable on potential source of U in the fuel debris. Estimation on the fuel debris accumulated in the reactor pressure vessel is specifically important due to its limited accessibility. The present study aims to estimate the chemical forms of U in the in-vessel fuel debris, especially in the minor phases such as metallic phases, by performing the thermodynamic calculation considering the material relocation and changing environment during the accident progression in the 1F Unit 2. Input conditions for the thermodynamic calculation such as composition, temperature, and oxygen amount were assumed mainly based on the results of severe accident analysis. The chemical form of U varied depending on the local amount of Fe and O. In regions of low steel content, the U-containing metallic phase was dominated by $$alpha$$-(Zr,U)(O), while regions of high steel content were dominated by Fe$$_{2}$$(Zr,U) (Laves phase). A few percent of U was transferred to the metallic phases under reducing conditions, raising challenging issues on the chemical removal of nuclear material from fuel debris.

Journal Articles

Structural characterization and magnetic behavior of uranium compound U$$_2$$Pt$$_6$$Al$$_{15}$$

Haga, Yoshinori; Sugai, Takashi*; Matsumoto, Yuji*; Yamamoto, Etsuji

JPS Conference Proceedings (Internet), 29, p.013003_1 - 013003_5, 2020/02

Journal Articles

Systematic measurements and analyses for lead void reactivity worth in a plutonium core and two uranium cores with different enrichments

Fukushima, Masahiro; Goda, J.*; Oizumi, Akito; Bounds, J.*; Cutler, T.*; Grove, T.*; Hayes, D.*; Hutchinson, J.*; McKenzie, G.*; McSpaden, A.*; et al.

Nuclear Science and Engineering, 194(2), p.138 - 153, 2020/02

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

To validate lead (Pb) nuclear cross sections, a series of integral experiments to measure lead void reactivity worth was conducted systematically in three fast spectra with different fuel compositions on the Comet critical assembly of the National Criticality Experiments Research Center. Previous experiments in a high-enriched uranium (HEU)/Pb and a low-enriched uranium (LEU)/Pb systems had been performed in 2016 and 2017, respectively. A follow-on experiment in a plutonium (Pu)/Pb system has been completed. The Pu/Pb system was constructed using lead plates and weapons grade plutonium plates that had been used in the Zero Power Physics Reactor (ZPPR) of Argonne National Laboratory until the 1990s. Furthermore, the HEU/Pb system was re-examined on the Comet critical assembly installed newly with a device that can guarantee the gap reproducibility with a higher accuracy and precision, and then the experimental data was re evaluated. Using the lead void reactivity worth measured in these three cores with different fuel compositions, the latest nuclear data libraries, JENDL 4.0 and ENDF/B VIII.0, were tested with the Monte Carlo calculation code MCNP version 6.1. As a result, the calculations by ENDF/B-VIII.0 were confirmed to agree with lead void reactivity worth measured in all the cores. It was furthermore found that the calculations by JENDL 4.0 overestimate by more than 20% for the Pu/Pb core while being in good agreements for the HEU/Pb and LEU/Pb cores.

JAEA Reports

Waste liquid treatment for uranium liquid waste containing impurities

Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Testing 2019-003, 20 Pages, 2019/12


In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.

Journal Articles

Thermodynamic interpretation of uranium(IV/VI) solubility in the presence of $$alpha$$-isosaccharinic acid

Kobayashi, Taishi*; Sasaki, Takayuki*; Kitamura, Akira

Journal of Chemical Thermodynamics, 138, p.151 - 158, 2019/11

 Times Cited Count:0 Percentile:100(Thermodynamics)

The effect of $$alpha$$-isosaccharinic acid (ISA) on the solubility and redox of tetravalent and hexavalent uranium (U(IV), U(VI)) was investigated in the hydrogen ion concentration (pH$$_{c}$$) range of 6$$sim$$13 and at total ISA concentration ([ISA]$$_{rm tot}$$) = 10$$^{-4}$$$$sim$$10$$^{-1.2}$$ mol/dm$$^{3}$$. The dependence of U(IV) solubility on pH$$_{c}$$ and [ISA]$$_{rm tot}$$ suggested the existence of U(OH)$$_{4}$$(ISA)$$_{2}$$$$^{2-}$$ as a dominant species within the investigated pH$$_{c}$$ range of 6$$sim$$12. For the U(VI)-ISA system, UO$$_{2}$$(OH)$$_{3}$$(ISA)$$_{2}$$$$^{2-}$$ was suggested as a dominant species at pH$$_{c}$$ 7$$sim$$13. The formation constants of the U(IV)-ISA and U(VI)-ISA complexes were determined by least-squares fitting of the solubility data. The solubility of U(IV) and U(VI) in the presence of ISA and its effect on the redox behavior were thermodynamically interpreted based on the obtained constants.

Journal Articles

Uranium waste engineering research at the Ningyo-Toge Environmental Engineering Center of JAEA

Umezawa, Katsuhiro; Morimoto, Yasuyuki; Nakayama, Takuya; Nakagiri, Toshio

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05

In December 2016, the Ningyo-toge Environmental Engineering Center of Japan Atomic Energy Agency (JAEA Ningyo-toge) announced new concept of "Uranium and Environmental Research Platform". As part of the concept, uranium waste engineering research are now undergoing. The objective of the research is to establish the processing technology for safely and reasonable disposal of uranium waste. In particular, estimation of the amount of uranium and harmful substances and development of technologies to reduce their concentration in the waste to the permissive level for the disposal in shallow ground disposal are needed. We are now developing the technologies to reduce the concentration of uranium and harmful substances shown below. (1) Survey on uranium inventory. Uranium waste is now stored in 10-odd thousands of 200 L drums. We are surveying amount and chemical form of uranium in the drums. (2) Development of decontamination technology of metal and concrete waste. We are investigating decontamination methods for metals and concrete contaminated with uranium. (3) Development of technologies to remove, detoxify and fix the harmful substances. We are surveying the types and amounts of harmful substances in waste. In addition, we are investigating the method to remove, detoxify, and fix harmful substances. (4) Measurement technology of uranium radioactivity. We are investigating and examining ways to improve the quantitative accuracy of measurement and shorten the measurement time. (5) Development of uranium removal technology from sludge. We are investigating new processing method to remove uranium from sludge which is applicable for several kind of sludge. The results of these technological developments and environmental research will be reflected to "small-scale field test" and "disposal demonstration test" which are planned for demonstration of the uranium waste disposal technology.

JAEA Reports

Update of JAEA-TDB; Update of thermodynamic data for zirconium and those for isosaccahrinate, tentative selection of thermodynamic data for ternary M$$^{2+}$$-UO$$_{2}$$$$^{2+}$$-CO$$_{3}$$$$^{2-}$$ system and integration with JAEA's thermodynamic database for geochemical calculations

Kitamura, Akira

JAEA-Data/Code 2018-018, 103 Pages, 2019/03


The latest available thermodynamic data were critically reviewed and the selected values were included into the JAEA-TDB for performance assessment of geological disposal of high-level radioactive and TRU wastes. This critical review specifically addressed thermodynamic data for (1) a zirconium-hydroxide system through comparison of thermodynamic data selected by the Nuclear Energy Agency within the Organisation for Economic Co-operation and Development (OECD/NEA), (2) complexation of metal ions with isosaccharinic acid based on the latest review papers. Furthermore, the author performed (3) tentative selection of thermodynamic data on ternary complexes among alkaline-earth metal, uranyl and carbonate ions, and (4) integration with the latest version of JAEA's thermodynamic database for geochemical calculations. The internal consistency of the selected data was checked by the author. Text files of the updated and integrated thermodynamic database have been prepared for geochemical calculation programs of PHREEQC and Geochemist's Workbench.

Journal Articles

Magnetic and electrical properties of the ternary compound U$$_2$$Ir$$_3$$Si$$_5$$ with one-dimensional uranium zigzag chains

Li, D. X.*; Honda, Fuminori*; Miyake, Atsushi*; Homma, Yoshiya*; Haga, Yoshinori; Nakamura, Ai*; Shimizu, Yusei*; Maurya, A.*; Sato, Yoshiki*; Tokunaga, Masashi*; et al.

Physical Review B, 99(5), p.054408_1 - 054408_9, 2019/02

 Times Cited Count:2 Percentile:74.19(Materials Science, Multidisciplinary)

JAEA Reports

Calculations of Tritium Recoil Release from Li and U Impurities in Neutron Reflectors (Joint research)

Ishitsuka, Etsuo; Kenzhina, I.*; Okumura, Keisuke; Ho, H. Q.; Takemoto, Noriyuki; Chikhray, Y.*

JAEA-Technology 2018-010, 33 Pages, 2018/11


As a part of study on the mechanism of tritium release to the primary coolant in research and testing reactors, tritium recoil release rate from Li and U impurities in the neutron reflector made by beryllium, aluminum and graphite were calculated by PHITS code. On the other hand, the tritium production from Li and U impurities in beryllium neutron reflectors for JMTR and JRR-3M were calculated by MCNP6 and ORIGEN2 code. By using both results, the amount of recoiled tritium from beryllium neutron reflectors were estimated. It is clear that the amount of recoiled tritium from Li and U impurities in beryllium neutron reflectors are negligible, and 2 and 5 orders smaller than that from beryllium itself, respectively.

Journal Articles

Spectroscopic measurements of L X-rays with a TES microcalorimeter for a non-destructive assay of transuranium elements

Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke*; Sugimoto, Tetsuya*; Kiguchi, Yu*; Iyomoto, Naoko*; Mitsuda, Kazuhisa*

Journal of Low Temperature Physics, 193(3-4), p.314 - 320, 2018/11

 Times Cited Count:0 Percentile:100(Physics, Applied)

Journal Articles

Retention of uranium in cement systems; Effects of cement degradation and complexing ligands

Ochs, M.*; Vriens, B.*; Tachi, Yukio

Progress in Nuclear Science and Technology (Internet), 5, p.208 - 212, 2018/11

The clean-up activities related to the accident at the Fukushima Nuclear Power Plant give rise to several types of wastes containing cementitious materials, such as concrete. Further, the use of cement-based barriers may be considered, due to their favorable and stable chemical properties, including their ability to sorb or incorporate radionuclides. Wastes from Fukushima are expected to contain substances that can have perturbing effects on retention, especially organic complexing substances, boron, and chloride salts. The present study focuses on a methodology for quantifying the retention behaviour of UVI) and U(IV) in cement materials of different degradation and in the presence of organics, boron, and salts on the basis of available literature information. A stepwise approach is proposed and illustrated for Kd setting for U(VI) and U(IV).

Journal Articles

Study on criticality in natural barrier for disposal of fuel debris from Fukushima Daiichi NPS

Shimada, Taro; Takubo, Kazuya*; Takeda, Seiji; Yamaguchi, Tetsuji

Progress in Nuclear Science and Technology (Internet), 5, p.183 - 187, 2018/11

After fuel debris is removed from the reactor containment vessel at Fukushima Daiichi NPS (1F) and collected in waste containers in the future, the waste containers will be disposed at a deep geological repository. The uranium inventory and uranium-235 ($$^{235}$$U) enrichment of the fuel debris are larger than those of high-level vitrified wastes which are produced from liquid waste during reprocessing of spent nuclear fuels. Therefore, there is a possibility not to be excluded that a criticality occurs in the geological media where the uranium precipitates at the far-field from the repository, after the uranium located in the repository is dissolved by groundwater. In this study, we calculated the quantity of uranium precipitated at the natural barrier, and studied dimension of uranium deposited in the natural barrier and carried out the criticality analysis.

Journal Articles

Magnetization study on the Ising ferromagnet URhGe with high-precision angle-resolved magnetic field near the hard axis

Nakamura, Shota*; Sakakibara, Toshiro*; Shimizu, Yusei*; Kittaka, Shunichiro*; Kono, Yohei*; Haga, Yoshinori; Pospisil, J.; Yamamoto, Etsuji

Progress in Nuclear Science and Technology (Internet), 5, p.123 - 127, 2018/11

Journal Articles

Anomalous Hall effect in a triangular-lattice antiferromagnet UNi$$_4$$B

Oyamada, Akira*; Inohara, Takao*; Yamamoto, Etsuji; Haga, Yoshinori

Progress in Nuclear Science and Technology (Internet), 5, p.128 - 131, 2018/11

Journal Articles

Crystal structure and magnetic properties of new ternary uranium compound U$$_3$$TiBi$$_9$$

Motoyama, Gaku*; Haga, Yoshinori; Yamaguchi, Akira*; Kawasaki, Ikuto*; Sumiyama, Akihiko*; Yamamura, Tomoo*

Progress in Nuclear Science and Technology (Internet), 5, p.157 - 160, 2018/11

Journal Articles

Continuous liquid-liquid extraction of uranium from uranium-containing wastewater using an organic phase-refining-type emulsion flow extractor

Nagano, Tetsushi; Naganawa, Hirochika; Suzuki, Hideya; Toshimitsu, Masaaki*; Mitamura, Hisayoshi*; Yanase, Nobuyuki*; Grambow, B.

Analytical Sciences, 34(9), p.1099 - 1102, 2018/09

 Times Cited Count:6 Percentile:44.18(Chemistry, Analytical)

A previously reported emulsion flow (EF) extraction system does not include a device for refining used solvent. Therefore, the processing of large quantities of wastewater by using the EF extractor alone could lead to the accumulation of wastewater components into the solvent and diminished extraction performance. In the present study, we have developed a solvent-washing-type EF system, which is equipped with a unit for washing used solvent to prevent accumulation, and successfully applied it for treating uranium-containing wastewater.

356 (Records 1-20 displayed on this page)