Refine your search:     
Report No.
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Nuclear criticality benchmark analyses on TRIGA-type reactor systems by using continuous-energy Monte Carlo code MVP with JENDL-5

Yanagisawa, Hiroshi; Umeda, Miki; Motome, Yuiko; Murao, Hiroyuki

JAEA-Technology 2022-030, 80 Pages, 2023/02


Nuclear criticality benchmark analyses were carried out for TRIGA-type reactor systems in which uranium-zirconium hydride fuel rods are loaded by using the continuous-energy Monte Carlo code MVP with the evaluated nuclear data library JENDL-5. The analyses cover two sorts of benchmark data, the IEU-COMP-THERM-003 and IEU-COMP-THERM-013 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook, and effective neutron multiplication factors, reactivity worths for control rods etc. were calculated by JENDL-5 in comparison with those by the previous version of JENDL. As the results, it was confirmed that the effective neutron multiplication factors obtained by JENDL-5 were 0.4 to 0.6% greater than those by JENDL-4.0, and that there were no significant differences in the calculated reactivity worths by between JENDL-5 and JENDL-4.0. Those results are considered to be helpful for the confirmation of calculation accuracy in the analyses on NSRR control rod worths, which are planned in the future.

JAEA Reports

Evaluation of the minimum critical amount for heterogeneous lattice systems composed of fuel rods utilized in low-power water-moderated research and test reactors by using continuous-energy Monte Carlo code MVP with JENDL-4.0

Yanagisawa, Hiroshi

JAEA-Technology 2021-023, 190 Pages, 2021/11


Computational analyses on nuclear criticality characteristics were carried out for heterogeneous lattice systems composed of water moderator and fuel rods utilized in low-power research and test reactors, in which the depletion of fuel due to burnup is relatively small, by using the continuous-energy Monte Carlo code MVP Version 2 with the evaluated nuclear data library JENDL-4.0. In the analyses, the minimum critical number of fuel rods was evaluated using calculated neutron multiplication factors for the heterogeneous systems of the uranium dioxide fuel rod in the Static Experiments Critical Facility (STACY) and the Tank-type Critical Assembly (TCA), and the uranium-zirconium hydride fuel rod in the Nuclear Safety Research Reactor (NSRR). In addition, six sorts of the ratio of reaction rates, which are components of neutron multiplication factors, were calculated in the analyses to explain the variation of neutron multiplication factors with the ratio of water moderator to fuel volume in a unit fuel rod cell. Those results of analyses are considered to be useful for the confirmation of reasonableness and validity of criticality safety measures as data showing criticality characteristics for water-moderated heterogeneous lattice systems composed of the existing fuel rods in research and test reactors, of which criticality data are not sufficiently provided by the Criticality Safety Handbook.

Journal Articles

Behavior of uranium-zirconium hydride fuel under reactivity initiated accident conditions

Sasajima, Hideo; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi; Uetsuka, Hiroshi

Proceedings of 7th International Topical Meeting on Research Reactor Fuel Management (ENS RRFM2003), p.109 - 113, 2003/03

Uranium-zirconium hydride (U-ZrHx) fuel has been widely utilized in the world as TRIGA reactor fuel. In order to obtain the fuel performance data under accident conditions and to enhance accountability of the safety assessment of the reactors using the fuel, irradiation tests under power burst type accident conditions have been conducted in the NSRR. Five pulse irradiation tests have been performed at peak fuel enthalpies ranging from 187 J/g to 483 J/g. Cladding surface temperature increased rapidly at the pulse and DNB occurred in peak fuel enthalpy over 187 J/g in the tests. The DNB occurred at lower fuel enthalpy in the U-ZrH1.6 fuel than in the UO$$_{2}$$ fuel rods. The rod internal pressure rose up to as high as 1MPa in the transient heating tests, suggesting considerable release of the hydrogen decomposed from the fuel. The peak pressure was lower than equilibrium hydrogen pressure of 1.5MPa at the peak temperature, suggesting the transient effect. Considerable PCMI was observed in the tests, through cladding elongation up to 3.3 mm synchronized to the pellet stack deformation.

JAEA Reports

Analysis of energy deposition and evaluation of maximum load of irradiation capsule for NSRR experiment with uranium-zirconium hydride fuel

Fuketa, Toyoshi; Ishijima, Kiyomi; Tanzawa, Sadamitsu; Nakamura, Takehiko; Sasajima, Hideo; Kashima, Yoichi; ;

JAERI-Research 95-005, 53 Pages, 1995/01


no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1