Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 225

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparative methodology between actual RCCS and downscaled heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 133, p.830 - 836, 2019/11

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.

Journal Articles

Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 122, p.201 - 206, 2018/12

 Percentile:100(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.

Journal Articles

Experimental study on heat removal performance of a new Reactor Cavity Cooling System (RCCS)

Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.

Journal Articles

Thermal-hydraulic analyses of the High-Temperature engineering Test Reactor for loss of forced cooling at 30% reactor power

Takamatsu, Kuniyoshi

Annals of Nuclear Energy, 106, p.71 - 83, 2017/08

The HTTR, which is the only HTGR having inherent safety features in Japan, conducted a safety demonstration test involving a loss of both reactor reactivity control and core cooling. The paper shows thermal-hydraulics during the LOFC test at an initial power of 30% reactor power (9 MW), when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero. The analytical results could show that the downstream of forced convection caused by the HPS pushes down the upstream by natural convection in the fuel assemblies; however, the forced convection has little influence on the core thermal-hydraulics without the reactor outlet coolant temperature. As a result, the three-dimensional thermal-phenomena inside the RPV during the LOFC test could be understood qualitatively.

JAEA Reports

Development of temperature measurement technology for control rod using melt wire in High Temperature engineering Test Reactor (HTTR)

Hamamoto, Shimpei; Sawahata, Hiroaki; Suzuki, Hisashi; Ishii, Toshiaki; Yanagida, Yoshinori

JAEA-Technology 2017-012, 20 Pages, 2017/06

JAEA-Technology-2017-012.pdf:7.9MB

A melt wire was installed at the tip of the control rod in order to measure the temperature of High Temperature engineering Test Reactor (HTTR). After experience with reactor scram from the state of reactor power 100%, the melt wire was taken out from the control rod and appearance has been observed visually. In this study, an exclusive device for taking out the melt wire was prepared. The take-out device functions as expected, and the melt wire was safely and reliably taken out using a remote manipulator. And because the visual observation of the melt wire was clearly carried out, we were successful in developing the control rod temperature measurement technology. It was confirmed that the melt wires with a melting point of 505$$^{circ}$$C or less were melted, and the melt wires with a melting point of 651$$^{circ}$$C or more were not melted. Therefore, it was found that the highest arrival temperature of tip of the control rods where the melt wires are installed reaches within the range of 505 to 651$$^{circ}$$C. And it was found that the control rod temperature at the time of reactor scram does not exceed the using temperature criteria (900$$^{circ}$$C) of Alloy 800H of the control rod sleeve.

Journal Articles

New reactor cavity cooling system (RCCS) with passive safety features; A Comparative methodology between a real RCCS and a scaled-down heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*

Annals of Nuclear Energy, 96, p.137 - 147, 2016/10

 Times Cited Count:1 Percentile:76.09(Nuclear Science & Technology)

After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.

Journal Articles

Establishment of integrity evaluation method for Reserved Shutdown System of High-Temperature engineering Test Reactor (HTTR)

Hamamoto, Shimpei; Kawamoto, Taiki; Kondo, Makoto; Sawahata, Hiroaki; Takada, Shoji; Shinozaki, Masayuki

Nippon Genshiryoku Gakkai Wabun Rombunshi, 15(2), p.66 - 69, 2016/06

High Temperature engineering Test Reactor (HTTR) has the reactivity control system which is accompanied with the Reserved Shutdown System (RSS). The RSS consists of B$$_{4}$$C/C pellets, guide tube, electric plug, motor which contains brake and reducer, and so on. In accidents when the control rods cannot be inserted, an electric plug is pulled out by motor and the B$$_{4}$$C/C pellets fall into the core by gravity. It was revealed that the motor in the RSS drive mechanism did not work as the result of pre-start up checks as described followings: (1) The oil which was separated from a grease of motor reducer flowed down from gap of oil seal, (2) the separated oil penetrated into the brake, (3) the penetrated oil was mixed with abrasion powder released from brake disk, finally, (4) the adhesive mixture blocked the rotation of the motor. A new evaluation method was proposed to detect a sign of the motor sticking. Through the overhaul inspection of all RSS drive mechanisms of HTTR, it was revealed that the proposed method was effective to evaluate the integrity of the RSS drive mechanism.

Journal Articles

New reactor cavity cooling system with a novel shape and passive safety features

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*

Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1250 - 1257, 2016/04

After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.

Journal Articles

Study of the flow characteristics of coolant channel of fuel blocks for HTGR

Tsuji, Nobumasa*; Ohashi, Kazutaka*; Tazawa, Yujiro*; Tachibana, Yukio; Ohashi, Hirofumi; Takamatsu, Kuniyoshi

FAPIG, (190), p.20 - 24, 2015/07

In a loss of forced cooling accident, decay heat in HTGRs must be removed by radiation, thermal conduction and natural convection. Passive heat removal performance is of primary concern for enhancing inherent safety features of HTGRs. Therefore, the thermal hydraulic analyses for normal operation and a loss of forced cooling accident are conducted by using thermal hydraulic CFD code. And further, a multi-hole type fuel block of MHTGR is also modeled and the flow and heat transfer characteristics are compared with a pin-in-block type fuel block.

Journal Articles

A Rapid evaluation method of the heat removed by a VCS before rise-to-power tests

Takamatsu, Kuniyoshi

Journal of Thermal Science, 24(3), p.295 - 301, 2015/06

 Times Cited Count:1 Percentile:86.8(Thermodynamics)

Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel (RPV) or removed by the Vessel Cooling System (VCS) cannot be obtained. It is difficult for operators to evaluate the reactor outlet coolant temperature supplied from the High Temperature Engineering Test Reactor (HTTR) before rise-to-power tests. Therefore, when the actual measured value of heat released from the RPV or removed by the VCS are changed during rise-to-power tests, operators need to evaluate quickly, within a few minutes, the heat removed by the VCS and the reactor outlet coolant temperature of 30 (MW), at the 100% of the reactor power, before the temperature achieves to 967 ($$^{circ}$$C) which is the maximum temperature limit generating the reactor scram. In this paper, a rapid evaluation method for use by operators is presented.

Journal Articles

Applicability study of nuclear graphite material IG-430 to VHTR

Osaki, Hirotaka; Shimazaki, Yosuke; Sumita, Junya; Shibata, Taiju; Konishi, Takashi; Ishihara, Masahiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 8 Pages, 2015/05

For the design on the VHTR graphite components, it is desirable to employ graphite material with higher strength. IG-430 graphite has been developed as an advanced candidate for VHTR. However, the new developed IG-430 does not have enough databases for the design of HTGR. In this paper, the compressive strength (Cs) of IG-430, one of important strengths for design data, is statistically evaluated. The component reliability is evaluated based on the safety factors defined by the graphite design code, and the applicability as the VHTR graphite material is discussed. It was found that IG-430 has higher strength (about 11%) and lower standard deviation (about 27%) than IG-110 which is one of traditional graphites used for HTGR, because the crack in IG-430 would not easy to propagate rather than IG-110. Since fracture probability for IG-430 is low, the higher reliability of core-component will be achieved using IG-430. It is expected that IG-430 is applicable for VHTR graphite material.

Journal Articles

New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs

Takamatsu, Kuniyoshi; Hu, R.*

Annals of Nuclear Energy, 77, p.165 - 171, 2015/03

 Times Cited Count:6 Percentile:28.02(Nuclear Science & Technology)

A new, highly efficient reactor cavity cooling system (RCCS) with passive safety features without a requirement for electricity and mechanical drive is proposed. The RCCS design consists of continuous closed regions; one is an ex-reactor pressure vessel (RPV) region and another is a cooling region having heat transfer area to ambient air assumed at 40 ($$^{circ}$$C). The RCCS uses a novel shape to efficiently remove the heat released from the RPV with radiation and natural convection. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal.

Journal Articles

Experiments and validation analyses of HTTR on loss of forced cooling under 30% reactor power

Takamatsu, Kuniyoshi; Tochio, Daisuke; Nakagawa, Shigeaki; Takada, Shoji; Yan, X.; Sawa, Kazuhiro; Sakaba, Nariaki; Kunitomi, Kazuhiko

Journal of Nuclear Science and Technology, 51(11-12), p.1427 - 1443, 2014/11

 Times Cited Count:8 Percentile:25.95(Nuclear Science & Technology)

In a safety demonstration test involving a loss of both reactor reactivity control and core cooling, HTGRs such as the HTTR, which is the only HTGR in Japan, demonstrate that the reactor power would stabilize spontaneously. In the test at an initial power of 30%, when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero, a reactor transient was initiated and examined. The results confirmed that the reactor power would decrease immediately and become effectively zero.

Journal Articles

Hydrogen permeation through heat transfer pipes made of Hastelloy XR during the initial 950$$^{circ}$$C operation of the HTTR

Sakaba, Nariaki; Ohashi, Hirofumi; Takeda, Tetsuaki

Journal of Nuclear Materials, 353(1-2), p.42 - 51, 2006/07

 Times Cited Count:6 Percentile:52.88(Materials Science, Multidisciplinary)

The permeation of hydrogen isotopes through the Hastelloy XR high-temperature alloy adopted for the heat transfer pipes of the intermediate heat exchanger in the HTTR, is one of the concerns in the hydrogen production system, which will be connected to the HTTR in the near future. The hydrogen permeation between the primary and secondary coolant through the Hastelloy XR was evaluated using the actual hydrogen concentration observed during the initial 950$$^{circ}$$C operation of the HTTR. The hydrogen permeability of the Hastelloy XR was estimated conservatively high as follows. The activation energy E$$_{0}$$ and pre-exponential factor F$$_{0}$$ of the permeability of hydrogen were E$$_{0}$$ = 65.8 kJ/mol and F$$_{0}$$ = 7.8$$times$$10$$^{-9}$$m$$^{3}$$(STP)/(m$$ast$$s$$ast$$Pa$$^{0.5}$$), respectively, in the temperature range from 707K to 900K.

Journal Articles

Improvement of core dynamics analysis of control rod withdrawal test in HTGR

Takamatsu, Kuniyoshi; Nakagawa, Shigeaki

Nippon Genshiryoku Gakkai Wabun Rombunshi, 5(1), p.45 - 56, 2006/03

The HTTR (High Temperature Engineering Test Reactor), which has thermal output of 30MW, coolant inlet temperature of 395$$^{circ}$$C and coolant outlet temperature of 850$$^{circ}$$C/950$$^{circ}$$C, is a first high temperature gas-cooled reactor (HTGR) in Japan. The HTGR has a high inherent safety potential to accident condition. Safety demonstration tests using the HTTR are underway in order to demonstrate such excellent inherent safety features of the HTGR. A one-point core dynamics approximation with one fuel channel model had applied to this analysis. It was found that the analytical model for core dynamics couldn't simulate the reactor power behavior accurately. This report proposes an original method using temperature coefficients of some regions in the core. It is crucial to evaluate this method precisely to simulate a performance of HTGR during the test.

Journal Articles

HTTR test programme towards coupling with the IS process

Iyoku, Tatsuo; Sakaba, Nariaki; Nakagawa, Shigeaki; Tachibana, Yukio; Kasahara, Seiji; Kawasaki, Kozo

Nuclear Production of Hydrogen, p.167 - 176, 2006/00

no abstracts in English

Journal Articles

Basic concept on structural design criteria for zirconia ceramics applying to nuclear components

Shibata, Taiju; Sumita, Junya; Baba, Shinichi; Yamaji, Masatoshi*; Ishihara, Masahiro; Iyoku, Tatsuo; Tsuji, Nobumasa*

Key Engineering Materials, 297-300, p.728 - 733, 2005/11

no abstracts in English

Journal Articles

Anisotropic deformation effect on the fracture of core components made of two-dimensional C/C composite

Sumita, Junya; Shibata, Taiju; Ishihara, Masahiro; Iyoku, Tatsuo; Tsuji, Nobumasa*

Key Engineering Materials, 297-300, p.143 - 147, 2005/11

no abstracts in English

Journal Articles

Annealing effect of thermal conductivity on thermal stress induced fracture of nuclear graphite

Sumita, Junya; Shibata, Taiju; Ishihara, Masahiro; Iyoku, Tatsuo; Tsuji, Nobumasa*

Key Engineering Materials, 297-300, p.1698 - 1703, 2005/11

no abstracts in English

Journal Articles

Helium chemistry in high-temperature gas-cooled reactors; Chemistry control for avoiding Hastelloy XR corrosion in the HTTR-IS system

Sakaba, Nariaki; Hirayama, Yoshiaki*

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The high-temperature gas-cooled reactor (HTGR) is capable of producing a massive quantity of hydrogen with no carbon dioxide emission during its production by a thermo chemical IS (Iodine-Sulphur) process. The HTTR (High Temperature Engineering Test Reactor), which is the first high-temperature gas-cooled reactor in Japan, will be connected to some heat utilization system in the near future. The thermo chemical IS process is one of the progressive candidates. The metallic material of the heat transfer tube of the intermediate heat exchanger (IHX) and liner in the concentric hot gas duct in the HTTR-IS system, which allows usage in high-temperature conditions, is the nickel-based high-temperature alloy Hastelloy XR. Since the coolant helium contains small amounts of impurities, it is necessary to control the chemical composition in order to minimize corrosion of the Hastelloy XR. Major corrosion phenomena of the Hastelloy XR are carburization, decarburization, oxidation, and carbon deposition depending upon the particular gas composition and its temperature. The carburization and decarburization phenomena can be restricted by controlling the carbon activity and oxygen partial pressure. This paper describes the effect of each coolant impurity for the carburization and decarburization. Also a chemical composition limit was evaluated to avoid the Hastelloy XR corrosion.

225 (Records 1-20 displayed on this page)