Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 13th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 11 Pages, 2024/11
Our research objectives are to develop a VCS that utilizes radiative cooling to passively remove decay heat and residual heat from the RPV during expected and unexpected natural phenomena and accidents. To solve the back pressure problem around the inlet and outlet, it is necessary to minimize reliance on fluid actuation, such as water, air, etc., and to avoid using natural circulation or natural convection as much as possible to improve safety against external hazards. In this presentation, we present the structural concept of the proposed VCS integrated with the reactor building and report the results of the cooling performance evaluation based on the results of experimental and analytical studies conducted to date.
Takamatsu, Kuniyoshi
Kakushinteki Reikyaku Gijutsu; Mekanizumu Kara Soshi, Shisutemu Kaihatsu Made, p.179 - 183, 2024/01
The HTGR has excellent safety, and even in the event of an accident where the reactor coolant is lost, the decay heat and residual heat in the core can be dissipated from the outer surface of the RPV, so the fuel temperature never exceeds the limit value, and the core stabilizes. On the other hand, regarding the cooling system that transports the heat emitted from the RPV to the final heat sink, an active cooling system using forced circulation of water by a pump, etc., and a passive cooling system using natural circulation of the atmosphere have been proposed. However, there is a problem that the cooling performance is affected by the operation of dynamic equipment and weather conditions. This paper presents an overview of a new cooling system concept using radiative cooling, which has been proposed to solve the above problem, and introduces the results of analysis and experiments aimed at confirming the feasibility of this concept.
Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05
A fundamental study on the safety of a passive cooling system for the RPV with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. A comparison of the Grashof number between the actual cooling system and the experimental apparatus confirmed that both were turbulent, and the experimental results as a scale model are valuable. Moreover, the experimental results confirmed that the heat generated from the surface of the RPV during the rated operation can be removed.
Takamatsu, Kuniyoshi; Funatani, Shumpei*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 17 Pages, 2023/04
The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Therefore, the authors concluded that the proposed RCCS based on atmospheric radiation has the advantage that the temperature of the RPV can be stably maintained against disturbances in the outside air (ambient air). Moreover, methodology to utilize all the heat emitted from the RPV surface for increasing the degree of waste-heat utilization was discussed.
Banno, Masaki*; Funatani, Shumpei*; Takamatsu, Kuniyoshi
Yamanashi Koenkai 2022 Koen Rombunshu (CD-ROM), 6 Pages, 2022/10
A fundamental study on the safety of a passive cooling system for the reactor pressure vessel (RPV) with radiative cooling is conducted. The object of this study is to demonstrate that passive RPV cooling system with radiative cooling is extremely safe and reliable even in the event of natural disasters. Therefore, an experimental apparatus, which is about 1/20 scale of the actual cooling system, was fabricated with several stainless steel containers. The surface of the heating element in the experimental apparatus simulates the surface of the RPV, and the heating element generates natural convection and radiation. As a result of the experiments, we succeeded in visualizing the natural convection in the experimental apparatus in detail.
Isogawa, Hiroki*; Naoi, Motomasa*; Yamasaki, Seiji*; Ho, H. Q.; Katayama, Kazunari*; Matsuura, Hideaki*; Fujimoto, Nozomu*; Ishitsuka, Etsuo
JAEA-Technology 2022-015, 18 Pages, 2022/07
As a summer holiday practical training 2021, the impact of 10 years long-term shutdown on critical control rod position of the HTTR and the delayed neutron fraction () of the VHTRC-1 core were investigated using Monte-Carlo MVP code. As a result, a long-term shutdown of 10 years caused the critical control rods of the HTTR to withdraw about 4.00.8 cm compared to 3.9 cm in the experiment. The change in critical control rods position of the HTTR is due to the change of some fission products such as Pu, Am, Pm, Sm, Gd. Regarding the calculation of the VHTRC-1 core, the value is underestimate of about 10% in comparison with the experiment value.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 162, p.108512_1 - 108512_10, 2021/11
Times Cited Count:1 Percentile:12.48(Nuclear Science & Technology)The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Next, simulations on accidental conditions, such as increasing average heat-transfer coefficient via natural convection due to natural disasters, were performed with STAR-CCM+, and methodology to control the amount of heat removal was discussed. As a result, a new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the amount of heat removal by heat transfer surfaces which can be controlled. Finally, methodology to determine structural thickness of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods by using pressurized and decompressed chambers was also proposed.
Okita, Shoichiro; Nagaya, Yasunobu; Fukaya, Yuji
Journal of Nuclear Science and Technology, 58(9), p.992 - 998, 2021/09
Times Cited Count:2 Percentile:24.93(Nuclear Science & Technology)Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 151, p.107867_1 - 107867_11, 2021/02
Times Cited Count:2 Percentile:24.93(Nuclear Science & Technology)A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We compared the RCCS using atmospheric radiation with that using atmospheric natural circulation in terms of passive safety features and control methods for heat removal. The magnitude relationship for passive safety features is heat conduction radiation natural convection. Therefore, the magnitude for passive safety features of the former RCCS can be higher than that of the latter RCCS. In controlling the heat removal, the former RCCS changes the heat transfer area only. On the other hand, the latter RCCS needs to change the chimney effect. It is necessary to change the air resistance in the duct. Therefore, the former RCCS can control the heat removal more easily than the latter RCCS.
Shibata, Taiju; Sato, Hiroyuki; Ueta, Shohei; Takegami, Hiroaki; Takada, Shoji; Kunitomi, Kazuhiko
2018 GIF Symposium Proceedings (Internet), p.99 - 106, 2020/05
no abstracts in English
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 133, p.830 - 836, 2019/11
Times Cited Count:2 Percentile:19.31(Nuclear Science & Technology)A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*
Annals of Nuclear Energy, 122, p.201 - 206, 2018/12
Times Cited Count:5 Percentile:35.54(Nuclear Science & Technology)A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.
Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11
A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.
Takamatsu, Kuniyoshi
Annals of Nuclear Energy, 106, p.71 - 83, 2017/08
The HTTR, which is the only HTGR having inherent safety features in Japan, conducted a safety demonstration test involving a loss of both reactor reactivity control and core cooling. The paper shows thermal-hydraulics during the LOFC test at an initial power of 30% reactor power (9 MW), when the insertion of all control rods was disabled and all gas circulators were tripped to reduce the coolant flow rate to zero. The analytical results could show that the downstream of forced convection caused by the HPS pushes down the upstream by natural convection in the fuel assemblies; however, the forced convection has little influence on the core thermal-hydraulics without the reactor outlet coolant temperature. As a result, the three-dimensional thermal-phenomena inside the RPV during the LOFC test could be understood qualitatively.
Hamamoto, Shimpei; Sawahata, Hiroaki; Suzuki, Hisashi; Ishii, Toshiaki; Yanagida, Yoshinori
JAEA-Technology 2017-012, 20 Pages, 2017/06
A melt wire was installed at the tip of the control rod in order to measure the temperature of High Temperature engineering Test Reactor (HTTR). After experience with reactor scram from the state of reactor power 100%, the melt wire was taken out from the control rod and appearance has been observed visually. In this study, an exclusive device for taking out the melt wire was prepared. The take-out device functions as expected, and the melt wire was safely and reliably taken out using a remote manipulator. And because the visual observation of the melt wire was clearly carried out, we were successful in developing the control rod temperature measurement technology. It was confirmed that the melt wires with a melting point of 505C or less were melted, and the melt wires with a melting point of 651C or more were not melted. Therefore, it was found that the highest arrival temperature of tip of the control rods where the melt wires are installed reaches within the range of 505 to 651C. And it was found that the control rod temperature at the time of reactor scram does not exceed the using temperature criteria (900C) of Alloy 800H of the control rod sleeve.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*
Annals of Nuclear Energy, 96, p.137 - 147, 2016/10
Times Cited Count:5 Percentile:41.31(Nuclear Science & Technology)After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.
Hamamoto, Shimpei; Kawamoto, Taiki; Kondo, Makoto; Sawahata, Hiroaki; Takada, Shoji; Shinozaki, Masayuki
Nihon Genshiryoku Gakkai Wabun Rombunshi, 15(2), p.66 - 69, 2016/06
High Temperature engineering Test Reactor (HTTR) has the reactivity control system which is accompanied with the Reserved Shutdown System (RSS). The RSS consists of BC/C pellets, guide tube, electric plug, motor which contains brake and reducer, and so on. In accidents when the control rods cannot be inserted, an electric plug is pulled out by motor and the BC/C pellets fall into the core by gravity. It was revealed that the motor in the RSS drive mechanism did not work as the result of pre-start up checks as described followings: (1) The oil which was separated from a grease of motor reducer flowed down from gap of oil seal, (2) the separated oil penetrated into the brake, (3) the penetrated oil was mixed with abrasion powder released from brake disk, finally, (4) the adhesive mixture blocked the rotation of the motor. A new evaluation method was proposed to detect a sign of the motor sticking. Through the overhaul inspection of all RSS drive mechanisms of HTTR, it was revealed that the proposed method was effective to evaluate the integrity of the RSS drive mechanism.
Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Morita, Koji*
Proceedings of 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (CD-ROM), p.1250 - 1257, 2016/04
After Fukushima Daiichi nuclear disaster by TEPCO, a cooling system to prevent core damage became more important from the perspective of defense in depth. Therefore, a new, highly efficient RCCS with passive safety features without a requirement for electricity and mechanical drive is proposed. Employing the air as the working fluid and the ambient air as the ultimate heat sink, the new RCCS design strongly reduces the possibility of losing the heat sink for decay heat removal. The RCCS can always stably and passively remove a part of the released heat at the rated operation and the decay heat after reactor shutdown. Specifically, emergency power generators are not necessary and the decay heat can be passively removed for a long time, even forever if the heat removal capacity of the RCCS is sufficient. We can also define the experimental conditions on radiation and natural convection for the scale-down heat removal test facility.
Tsuji, Nobumasa*; Ohashi, Kazutaka*; Tazawa, Yujiro*; Tachibana, Yukio; Ohashi, Hirofumi; Takamatsu, Kuniyoshi
FAPIG, (190), p.20 - 24, 2015/07
In a loss of forced cooling accident, decay heat in HTGRs must be removed by radiation, thermal conduction and natural convection. Passive heat removal performance is of primary concern for enhancing inherent safety features of HTGRs. Therefore, the thermal hydraulic analyses for normal operation and a loss of forced cooling accident are conducted by using thermal hydraulic CFD code. And further, a multi-hole type fuel block of MHTGR is also modeled and the flow and heat transfer characteristics are compared with a pin-in-block type fuel block.
Takamatsu, Kuniyoshi
Journal of Thermal Science, 24(3), p.295 - 301, 2015/06
Times Cited Count:2 Percentile:10.96(Thermodynamics)Before rise-to-power tests, the actual measured value of heat released from the Reactor Pressure Vessel (RPV) or removed by the Vessel Cooling System (VCS) cannot be obtained. It is difficult for operators to evaluate the reactor outlet coolant temperature supplied from the High Temperature Engineering Test Reactor (HTTR) before rise-to-power tests. Therefore, when the actual measured value of heat released from the RPV or removed by the VCS are changed during rise-to-power tests, operators need to evaluate quickly, within a few minutes, the heat removed by the VCS and the reactor outlet coolant temperature of 30 (MW), at the 100% of the reactor power, before the temperature achieves to 967 (C) which is the maximum temperature limit generating the reactor scram. In this paper, a rapid evaluation method for use by operators is presented.