Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato; Ibbott, C.*; Tivey, R.*
Fusion Science and Technology, 46(4), p.521 - 529, 2004/12
Times Cited Count:8 Percentile:49.43(Nuclear Science & Technology)Thermal hydraulic tests measuring critical heat flux CHF and pressure drop of an annular tube with twisted fin, "annular swirl tube", have been. This tube consists of two concentric tubes, the outer tube and the inner tube with a twisted fin on its outer surface. Cooling water flows inside of the inner tube first, and then returns into an annulus with a swirl flow at an end-return of the cooling tube. The CHF testing shows the no degradation of CHF of the annular swirl tube in comparison with the conventional swirl tube. A minimum axial velocity of 7.1m/sec is required for 28MW/m, the ITER design value. Applicability of the JAERI's correlation for the heat transfer to the annular swirl tube is also demonstrated by the comparison of the experimental results with those of the numerical analyses. The friction factor correlation for the annular flow with the twisted fins is made for the hydraulic designing of the vertical target. The least pressure drop at the end-return is obtained by using the hemispherical end-plug. Its radius is the same as that of ID of the outer cooling tube.
Ezato, Koichiro; Dairaku, Masayuki; Taniguchi, Masaki; Sato, Kazuyoshi; Suzuki, Satoshi; Akiba, Masato; Ibbott, C.*; Tivey, R.*
Fusion Science and Technology, 46(4), p.530 - 540, 2004/12
Times Cited Count:14 Percentile:66.88(Nuclear Science & Technology)The first fabrication and heating test of a large-scale CFC monoblock divertor mock-up using annular flow concept have been performed to demonstrate its manufacturability and thermo-mechanical performance. Prior to the fabrication of the mock-up, brazed joint tests between the CFC monoblock and the CuCrZr tube have been carried out to find the suitable heat treatment mitigating loss of the high mechanical strength of the CuCrZr material. Basic mechanical examination on CuCrZr undergoing the brazing heat treatment and FEM analyses are also performed to support the design of the mock-up. High heat flux tests on the large-scale divertor mock-up have been performed in an ion beam facility. The mock-up has successfully withstood more than 1,000 thermal cycles of for 15 s and 3,000 cycles more than
for 15 s, which simulates the heat load condition of the ITER divertor. No degradation of the thermal performance of the mock-up has been observed throughout the thermal cycle test.