Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Department of Decommissioning and Waste Management
JAEA-Review 2024-004, 124 Pages, 2024/07
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2022 to March 31, 2023. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2022 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 262 m of combustible solid wastes and 113 m of noncombustible solid wastes and 203 m of liquid wastes. After adequate treatment, 527 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 122,925 as of the end of FY2022 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF). As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.
Yamagishi, Isao; Hato, Shinji*; Nishihara, Kenji; Tsubata, Yasuhiro; Sagawa, Yusuke*
JAEA-Data/Code 2024-002, 63 Pages, 2024/07
Adsorption columns filled with zeolite are used to treat contaminated water containing radioactive cesium generated by the Fukushima Daiichi Nuclear Power Station accident. As the contaminated water treatment progresses, the radioactive cesium in the adsorption column becomes highly concentrated, and the adsorption column becomes a high radiation source. To evaluate the radiation effects such as decay heat and radiolytic hydrogen production in the adsorption column, the concentration of radioactive cesium in the adsorption column is necessary, but since it is difficult to evaluate the concentration by measurement, it is estimated by simulation. In this research, a zeolite column adsorption dynamics simulation (Zeolite Adsorption Column: ZAC) code was developed to calculate the concentration of radioactive materials such as radioactive cesium in a zeolite filled adsorption column when they are injected into the column. The code was validated through comparison of calculation results with existing codes and experimental results of small column tests. This report presents the details of the model, the handling of the code, and the validity of the results for the developed code.
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2023-027, 126 Pages, 2024/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted from FY2020 to FY2022. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop migration model of radionuclides, and to evaluate waste management scenarios, focusing on underground concrete structures in contact with contaminated water.
Kawahara, Takahiro; Suda, Shoya; Fujikura, Toshiki; Masai, Seita; Omori, Kanako; Mori, Masakazu; Kurosawa, Tsuyoshi; Ishihara, Keisuke; Hoshi, Akiko; Yokobori, Tomohiko
JAEA-Technology 2023-020, 36 Pages, 2023/12
We have been storing drums containing radioactive waste (radioactive waste packages) at waste storage facilities. We have been managing radioactive waste packages along traditional safety regulations. However, over 40 years has passed from a part of them were brought in pit-type waste storage facility L. Most of them are carbon steel 200 L drums, and surface of them are corroded. For better safety management, we started to take drums out from the pit and inspect them in FY 2019. After each inspection, we repair them or remove the contents of the drum and refill new drums if necessary. In this report, we will introduce the planning, the review of the plan, and the trial operation of this project.
Kato, Tomoaki; Yamagishi, Isao
JAEA-Technology 2023-018, 53 Pages, 2023/11
In the decommissioning of Fukushima Daiichi Nuclear Power Station, radioactive carbonate slurry waste was generated using the Advanced Liquid Processing System (ALPS) pretreatment and temporarily stored in a high integrity container (HIC). In 2015, overflow of supernatant from HIC estimate as bubble retention in the carbonate slurry was discovered, increasing the need for a safety assessment of the carbonate slurry stored the HIC (HIC slurry). In this study, a carbonate slurry (simulated slurry) was prepared according to the Mg/Ca mass ratio in the ALPS inlet water of the HIC slurry which overflew the HIC. The effects of reaction time during the pretreatment process, suspended solids concentration (SS concentration), and settling time on the particle composition, morphology and rheological properties of the slurry were investigated. Evaluating the effect of reaction time and concentration process on chemical properties in slurry production, the effect of the reaction time was not confirmed in the simulated slurry that had undergone the concentration process, and slurry prepared at SS concentration of 150 g/L was composed of formless particles have a particle diameter of 0.4 m or less. We also investigate the effect of SS concentration on sedimentability, decrease in SS concentration by dilution with processing solution contributed to an increase in the initial slurry settling velocity. Furthermore, two different flow characteristics were observed depending on the settling time, suggesting that the slurry at the initial settling time has non-Bingham flow properties, whereas it changes to Bingham flow properties as the settling time becomes longer. In addition, yield stress was increased with settling time, and this yield stress was found to be exponentially proportional to the density of the slurry. These results provide knowledge to estimate the current state of HIC slurry and are expected to contribute to the safety assessment.
Minari, Eriko*; Kabasawa, Satsuki; Mihara, Morihiro; Makino, Hitoshi; Asano, Hidekazu*; Nakase, Masahiko*; Takeshita, Kenji*
Journal of Nuclear Science and Technology, 60(7), p.793 - 803, 2023/07
Times Cited Count:3 Percentile:38.50(Nuclear Science & Technology)Department of Decommissioning and Waste Management
JAEA-Review 2023-001, 136 Pages, 2023/06
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2021 to March 31, 2022. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM. In FY2021 radioactive wastes generated from R&D activities in NSRI were treated safely. They were about 206 m of combustible solid wastes and 155 m of noncombustible solid wastes and 113 m of liquid wastes. After adequate treatment, 760 waste packages (in 200 L-drum equivalent) were generated. The total amounts of accumulated waste packages were 126,827 as of the end of FY2021 due to efforts of the restitution of waste packages to the Japan Radioisotope Association and volume reduction treatments of the stored waste packages. Decommissioning activities were carried out for the JAEA's Reprocessing Test Facility (JRTF), the Liquid Waste Treatment Facilities, the Compaction Facilities, and Fusion Neutronics Source (FNS) facilities. As for the R&D activities, studies on radiochemical analyses of wastes for disposal were continued. In order to pass the conformity review on the New Regulatory Requirements for waste management facilities, the Approval of the design and construction method was applied sequentially for the Nuclear Regulation Authority. The ministry of the Environment and Tokai-mura office requested JAEA to dispose of the contaminated soil generated by the accident of the Fukushima Daiichi Nuclear Power Station. The monitoring work at the playground was conducted during this period.
Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*
JAEA-Review 2022-058, 191 Pages, 2023/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination method for classification of the waste generated by fuel debris removal" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a method for separating nuclear fuel material from waste by fluorination in order to contribute to the classification of waste generated by fuel debris removal at 1F. In order to comprehensively evaluate the fluorination behavior for the generated phase in various MCCI products, some simulated wastes were prepared by controlling redox conditions, and the fluorination experiment was carried out.
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2022-038, 102 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2021. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete altered by leaching, to develop a model to predict concentration profiles, and to analyze waste management scenarios, with a focus on underground concrete structures in contact with contaminated water. Migration behaviors depend on radionuclides and their chemical species. Sorption of I is less significant on C-S-H and C-A-S-H than on hardened cement paste with two orders of magnitude smaller distribution coefficient , while of U was the same …
Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*
JAEA-Review 2022-003, 126 Pages, 2022/06
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2020.
Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*
JAEA-Review 2021-070, 98 Pages, 2022/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2020. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete materials altered due to leaching, to develop a model to simulate the migration behaviors based on the experimental findings, and to analyze waste management scenarios for radioactive concrete. The focus of the study is the underground concrete structures of Fukushima Daiichi Nuclear Power Station, which is in contact with contaminated water.
Collaborative Laboratories for Advanced Decommissioning Science; Hitachi-GE Nuclear Energy*
JAEA-Review 2020-034, 155 Pages, 2021/01
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Fluorination Method for Classification of the Waste Generated by Fuel Debris Removal" conducted in FY2019.
Department of Decommissioning and Waste Management
JAEA-Review 2020-012, 103 Pages, 2020/08
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2018 to March 31, 2019. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Department of Decommissioning and Waste Management
JAEA-Review 2019-011, 91 Pages, 2019/10
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2017 to March 31, 2018. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development
JAEA-Evaluation 2019-006, 122 Pages, 2019/08
Japan Atomic Energy Agency (hereinafter referred to as "JAEA") consulted the "Evaluation Committee for Decommissioning and Radioactive Waste Management" (hereinafter referred to as "Committee") to perform the interim evaluation of "technology development related to spent fuel reprocessing (vitrification technology of high-level radioactive liquid waste)" project, "decommissioning of nuclear facilities and associated technology development" project and "radioactive waste treatment and disposal and associated technology development" project in accordance with the "Guideline for evaluation of government R&D activities", the "Guideline for evaluation of R&D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)" and the "Operational rule for evaluation of R&D activities" by JAEA. In response to JAEA's request, the Committee assessed each project results in the view points of execution method, plans, outcomes and so on. As a result of review, the Committee concluded that each project is reasonable in accordance with the evaluation method having been decided by the Committee.
Nomura, Kazunori; Ogi, Hiromichi*; Nakahara, Masaumi; Watanabe, So; Shibata, Atsuhiro
International Journal of Nuclear and Quantum Engineering (Internet), 13(5), p.209 - 212, 2019/00
Saegusa, Jun; Koma, Yoshikazu; Ashida, Takashi
JAEA-Review 2018-017, 259 Pages, 2018/12
Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Fukushima Research Conference on Development of Analytical Techniques in Waste Management (FRCWM 2018) on 19th and 20th June, 2018. This report compiles the abstracts and the presentation materials in the above conference.
Department of Decommissioning and Waste Management
JAEA-Review 2018-008, 87 Pages, 2018/07
This report describes the activities of Department of Decommissioning and Waste Management (DDWM) in Nuclear Science Research Institute (NSRI) in the period from April 1, 2016 to March 31, 2017. The report covers organization and missions of DDWM, outline and operation/maintenance of facilities which belong to DDWM, treatment and management of radioactive wastes, decommissioning activities, and related research and development activities which were conducted in DDWM.
Sugiyama, Daisuke*; Kimura, Hideo; Tachikawa, Hirokazu*; Iimoto, Takeshi*; Kawata, Yosuke*; Ogino, Haruyuki*; Okoshi, Minoru*
Journal of Radiological Protection, 38(1), p.456 - 462, 2018/03
Times Cited Count:0 Percentile:0.00(Environmental Sciences)Experience after the accident at the Fukushima Daiichi Nuclear Power Station has shown that there is a need to establish radiation protection criteria for radioactive waste management consistent with the criteria adopted for the remediation of existing exposure situations. A stepwise approach to setting such criteria is proposed. Initially, a reference level for annual effective dose from waste management activities in the range 1-10 mSv should be set, with the reference level being less than the reference level for ambient dose. Subsequently, the reference level for annual effective dose from waste management activities should be reduced in one or more steps to achieve a final target value of 1 mSv. The dose criteria at each stage should be determined with relevant stakeholder involvement. Illustrative case studies show how this stepwise approach might be applied in practice.
Sano, Yuichi; Ashida, Takashi
JAEA-Review 2017-021, 180 Pages, 2017/11
Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R&D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Cementitious Composites in Decommissioning and Waste Management (RCWM2017) on 20th and 21st June, 2017. This report compiles the abstracts and the presentation materials in the above conference.