Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yee-Rendon, B.; Jameson, R. A.*; Okamura, Masahiro*; Li, C.*; Jiang, P.*; Maus, J. M.*
Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.492 - 495, 2024/10
LINACs is a simulation framework for designing optics and beam dynamics of charged particles in particle accelerators. LINACs is an open-source software that enables the user complete control over all design and simulation parameters of RFQs. This includes beam-driven design, fully 3D simulation using precise quadrupolar symmetry, and rigorous Poisson solution for external and space charge fields. The code can handle simultaneous particle beams with analytical input distributions and allows input beam scans. The software offers a relatively short running time and provides extensive analysis techniques. This work provides a historical overview of the code, presents results from RFQ models, and discusses future developments.
Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro
Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.488 - 491, 2024/10
The Japan Atomic Energy Agency (JAEA) is designing a 30-MW CW proton linear accelerator (linac) for nuclear waste transmutation. Space-charge is the primary challenge in achieving low losses and high beam quality for high-power accelerators, especially at low energy levels where space-charge forces are greater. To counteract the space-charge effects, the low-energy beam transport (LEBT) uses a magnetostatic design to enable the neutralization of the beam charge, the so-called space charge compensation. The neutralization is an accumulation process that reaches a charge balance between the main beam and the opposite ionized particles. However, this equilibrium is destroyed by the chopper system used during beam ramping. During those transient regimes, the beam optics conditions are not optimal for the beam, producing considerable degradation that can end in serious damage to the accelerator. Thus, analysis of beam behavior at these periods is essential to develop a robust design and an efficient operation of the JAEA-ADS linac. This study presents the beam dynamics of neutralization build-up and chopper operation for the JAEA-ADS LEBT.
Plaais, A.*; Bouly, F.*; Froidefond, E.*; Lagniel, J.-M.*; Normand, G.*; Orduz, A. K.*; Yee-Rendon, B.; De Keukeleere, L.*; Van De Walle, J.*
Proceedings of 32nd Linear Accelerator Conference (LINAC 2024) (Internet), p.563 - 568, 2024/10
Reliability is an important feature for high power particle accelerators. This is particularly true for Accelerator-Driven Systems (ADS), for that every beam interruption can strongly affect the availability of the nuclear reactor. Many of these outages come from the loss of accelerating cavities or of their associated systems. Cavity failures can be compensated for by retuning other cavities of the linac. Finding the ideal compensation settings is however a difficult challenge that involves beam dynamics and multi-objective optimisation, and which raises very different issues according to the linac under study. For instance in the SPIRAL2 linac, a lot of cavities are mobilized for the compensation and the search space has a very high number of dimensions. Plus, it has quite low margins on the longitudinal acceptance. Linacs for ADS (such as the Japan Atomic Energy Agency ADS or MYRRHA) have a specific fault-tolerance design which facilitate the optimisation, but cavities have to be retuned in a few seconds. Hence we developed LightWin, a tool to automatically and systematically find compensation settings for every cavity failure of any given linac. In this study, we will present LightWin latest developments as well as the compensation strategies that we developed for SPIRAL2 and ADS linacs, both from a beam dynamics and a mathematical point of view.
Takei, Hayanori
Journal of Nuclear Science and Technology, 61(8), p.1075 - 1088, 2024/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In the proton linear accelerator (linac), the proton beam is unexpectedly interrupted due to the electrical discharge originating from the radio frequency, failure of the device/equipment, or other factors. Do these beam trips occur randomly? Conventionally, it has been implicitly assumed that beam trips occur randomly. In this study, we investigated whether beam trips in the linac of the Japan Proton Accelerator Research Complex (J-PARC) occur randomly to estimate the beam trip frequency in a superconducting proton linac for an accelerator-driven nuclear transmutation system. First, the J-PARC linac was classified into five subsystems. Then, the reliability function for the operation time in each subsystem was obtained using the Kaplan--Meier estimation, a reliability engineering methods. Using this reliability function, the randomness of beam trips was examined. Analysis of five-year operational data for five subsystems of the J-PARC linac showed that beam trips occurred randomly in some subsystems. However, beam trips did not occur randomly in many subsystems of the proton linac, including the ion source and the acceleration cavity, the primary subsystems of the proton linac.
Katano, Ryota; Oizumi, Akito; Fukushima, Masahiro; Pyeon, C. H.*; Yamamoto, Akio*; Endo, Tomohiro*
Nuclear Science and Engineering, 198(6), p.1215 - 1234, 2024/06
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)In this study, we have demonstrated that data assimilation using lead and bismuth sample reactivities measured in the Kyoto University Critical Assembly A-core can successfully reduce the uncertainty of the coolant void reactivity in accelerator-driven systems derived from inelastic-scattering cross-sections of lead and bismuth. We re-evaluated and highlighted the experimental uncertainties and correlations of the sample reactivities for the data assimilation formula. We used the MCNP6.2 code to evaluate the sample reactivities and their uncertainties, and performed data assimilation using the reactor analysis code system MARBLE. The high-sensitivity coefficients of the sample reactivities to lead and bismuth allowed us to reduce the cross-section-induced uncertainty of the void reactivity of the accelerator-driven system from 6.3% to 4.8%, achieving a provisional target accuracy of 5% in this study. Furthermore, we demonstrated that the uncertainties arising from other dominant factors, such as minor actinides and steel, can be effectively reduced by using integral experimental data sets for the unified cross-section dataset ADJ2017.
Plaais, A.*; Bouly, F.*; Yee-Rendon, B.
Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.4097 - 4100, 2023/09
Reliability in high power hadron accelerators is a major issue, particularly for Accelerator Driven Systems (ADS). For example, the Japan Atomic Energy Agency (JAEA) ADS maximum frequency of beam trips longer than 5 min was set to 42 per year. A significant number of breakdowns are caused by the failure of accelerating cavities or by their associated systems. Hence, we studied how these can be effectively reduced. To this end, we developed the numerical tool LightWin that aims to determine the compensation settings for any superconducting (SC) linac automatically and systematically. This tool has been successfully used for the MYRRHA SC linac. In this work, we applied LightWin to compensate for several failure scenarios involving the last section of the JAEA ADS linac and compared the associated retuned settings and beam performance to those found in a previous study with TraceWin.
Yamamoto, Kazami; Ogiwara, Norio*; Kuramochi, Masaya*
e-Journal of Surface Science and Nanotechnology (Internet), 21(4), p.359 - 364, 2023/07
In recent years, durable target is required according to increase of the beam power. To solve this problem, a liquid film was formed in vacuum and tested it as a target. An ethanol and a mercury were selected as liquid target materials, and we investigated whether the liquid sheet could be formed stably in a vacuum and how about the vacuum pressure. As a result, it was confirmed that the liquid films were stably formed in both case and the pressures with the films were about the vapor pressure of the materials.
Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Maekawa, Fujio; Meigo, Shinichiro
Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.1591 - 1593, 2023/05
The Japan Atomic Energy Agency (JAEA) is designing a 30 MW continuous wave (cw) superconducting proton linear accelerator (linac) for the Accelerator Driven System (ADS) proposal. The JAEA-ADS linacs ion source must provide a proton beam over 20 mA with an energy of 35 keV and a normalized rms emittance of less than 0.1 mm mrad. As the extraction system determines the beam properties and quality, systematic optimizations on the geometry and input values of the extraction system design were conducted using the AXCEL-INP 2-D simulation program to satisfy the goal requirements. This work describes the extraction system design and reports the beam dynamics results of the first study for the proton source of the JAEA-ADS linac.
Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 183, 2023/01
The Japan Atomic Energy Agency accelerator-driven subcritical system (JAEA-ADS) pursues the reduction of nuclear waste by transmuting minor actinides. JAEA-ADS project drives a 30-MW proton beam to a lead-bismuth eutectic (LBE) spallation target to produce neutrons for a subcritical core reactor. To this end, the JAEA-ADS beam transport (BT) must provide a suitable beam profile and stable beam power to the beam window of the spallation target to avoid high-thermal stress in the components, such as the beam window. The beam transport was optimized by tracking a large number of macroparticles to mitigate the beam loss, performance with high stability in the presence of errors, and fulfill the length requirement on the transport. This work presents beam transport design and beam dynamics research for the JAEA-ADS project.
Jameson, R. A.*; Yee-Rendon, B.
Journal of Instrumentation (Internet), 17(12), p.P12011_1 - P12011_11, 2022/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)A new application of vane modulation variation in a Radio Frequency Quadrupole (RFQ) cell has been applied that significantly improves beam bunching and longitudinal emittance control to achieve lower longitudinal rms emittance at the RFQ output. This procedure occurs in the individual cells, is independent of the overall design, and therefore is general, affording an extra parameter for beam manipulation. It can be applied besides the usual goals of vane modulation variation, e.g., to achieve higher acceleration efficiency. Examples of the cumulative effects on the overall design are provided to point out further exploration avenues for the designer.
Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; Yashima, Hiroshi*; Nishio, Katsuhisa; et al.
JAEA-Conf 2022-001, p.129 - 133, 2022/11
For accurate prediction of neutronic characteristics for accelerator-driven systems (ADS) and a source term of spallation neutrons for reactor physics experiments for the ADS at Kyoto University Critical Assembly (KUCA), we have launched an experimental program to measure nuclear data on ADS using the Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University. As part of this program, the proton-induced double-differential thick-target neutron-yields (TTNYs) and cross-sections (DDXs) for iron have been measured with the time-of-flight (TOF) method. For each measurement, the target was installed in a vacuum chamber on the beamline and bombarded with 107-MeV proton beams accelerated from the FFAG accelerator. Neutrons produced from the targets were detected with stacked, small-sized neutron detectors composed of the NE213 liquid organic scintillators and photomultiplier tubes, which were connected to a multi-channel digitizer mounted with a field-programmable gate array (FPGA), for several angles from the incident beam direction. The TOF spectra were obtained from the detected signals and the FFAG kicker magnet's logic signals, where gamma-ray events were eliminated by pulse shape discrimination applying the gate integration method to the FPGA. Finally, the TTNYs and DDXs were obtained from the TOF spectra by relativistic kinematics.
Maekawa, Fujio
JAEA-Conf 2022-001, p.7 - 13, 2022/11
The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is developing the P-T technology combined with accelerator driven systems (ADS). One of critical issues affecting the feasibility of ADS is the proton beam window (PBW) which functions as a boundary between the accelerator and the sub-critical reactor core. The PBW is damaged by a high-intensity proton beam and spallation neutrons produced in the target, and also by flowing high-temperature liquid lead bismuth eutectic alloy which is corrosive to steel materials. To study the materials damage under the ADS environment, J-PARC is proposing a plan of proton irradiation facility which equips with a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam. The facility is also open for versatile purposes such as soft error testing of semi-conductor devises, RI production, materials irradiation for fission and fusion reactors, and so on. Application to nuclear data research with using the proton beam and spallation neutrons is also one of such versatile purposes, and we welcome unique ideas from the nuclear data community.
Yee-Rendon, B.; Meigo, Shinichiro; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Iwamoto, Hiroki; Sugawara, Takanori; Nishihara, Kenji
Journal of Instrumentation (Internet), 17(10), p.P10005_1 - P10005_21, 2022/10
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)To reduce the hazard of minor actinides in nuclear waste, JAEA proposed an accelerator-driven subcritical system (JAEA-ADS). The JAEA-ADS drives a subcritical reactor 800-MWth by 30-MW proton linac delivering the beam to the spallation neutron target inside the reactor. The beam transport to the target (BTT) is required for high-beam power stability and low peak density to ensure the integrity of the beam window. Additionally, the design should have compatible with the reactor design for the maintenance and replacement of the fuel and the beam window. A robust-compact BTT design was developed through massive multiparticle simulations. The beam optics was optimized to guarantee beam window feasibility requirements by providing a low peak density of less than 0.3 A/mm. Beam stability was evaluated and improved by simultaneously applying the linac's input beam and element errors. The input beam errors to the reactor were based on the beam degradation obtained by implementing fast fault compensation in the linac. Those results show that the BTT fulfills the requirements for JAEA-ADS.
Katano, Ryota; Yamamoto, Akio*; Endo, Tomohiro*
Nuclear Science and Engineering, 196(10), p.1194 - 1208, 2022/10
Times Cited Count:1 Percentile:18.18(Nuclear Science & Technology)In this study, we propose the ROM-Lasso method that enables efficient evaluation of sensitivity coefficients of neutronics parameters to cross-sections. In the proposed method, a vector of sensitivity coefficients is expanded by subspace bases, so-called Active Subspace (AS) based on the idea of Reduced Order Modeling (ROM). Then, the expansion coefficients are evaluated by the Lasso linear regression between cross-sections and neutronics parameters obtained by the random sampling. The proposed method can be applied in the case where the adjoint method is difficult to be applied since the proposed method uses only forward calculations. In addition, AS is an effective subspace that can expand the vector of sensitivity coefficients with the lower number of dimension. Thus, the number of unknows is reduced from the original number of input parameters and the calculation cost is dramatically improved compared to the Lasso regression without AS. In this paper, we conducted ADS burnup calculations as a verification. We have shown how AS bases are obtained and the applicability of the proposed method.
Yee-Rendon, B.
Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.310 - 313, 2022/10
Accelerator-driven subcritical systems (ADS) offer an advantageous option for the transmutation of nuclear waste. ADS employs high-intensity proton linear accelerators (linacs) to produce spallation neutrons for a subcritical reactor. Besides the challenges of any megawatt proton machine, ADS accelerator must operate with stringent reliability to avoid thermal stress in the reactor structures. Thus, ADS linacs have adopted a reliability-oriented design to satisfy the operation requirements. This work provides a review and the present status of the ADS linacs in the world.
Ariyoshi, Gen; Obayashi, Hironari; Sasa, Toshinobu
Journal of Nuclear Science and Technology, 59(9), p.1071 - 1088, 2022/09
Times Cited Count:1 Percentile:18.18(Nuclear Science & Technology)Electromagnetic induction method is one of the effective techniques for local velocity measurement in heavy liquid metals. Ricou and Vives' probe and Von Weissenfluh's probe are famous instrumentations using a permanent magnet. However, sensitivity and measurement volume of the probes show unexpected variation since demagnetization of the magnet is occurred by temperature increase up to the Curie temperature. In this study, electromagnetic probe incorporating a miniature electromagnet was newly developed to overcome such unexpected variation. The diameter and the length of the sensor was 6 mm and 155 mm, respectively. The sensitivity and the measurement volume of the probe were assessed by measurement of local velocity of flowing mercury in a square channel. To clarify the validity for the measured velocity profiles, numerical velocity profiles were calculated and compared with experiment. And the validity for the measured velocity profiles were confirmed by calculated result.
Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro
Physical Review Accelerators and Beams (Internet), 25(8), p.080101_1 - 080101_17, 2022/08
Times Cited Count:3 Percentile:50.12(Physics, Nuclear)High reliability and availability are primary goals for the operation of particle accelerators, especially for accelerator-driven subcritical systems (ADS). ADSs employ high-power beams for the transmutation of minor actinide; as a result, the amount and the radiotoxicity of the nuclear waste are considerably reduced. To this end, the Japan Atomic Energy Agency is designing a 30-MW continuous wave (cw) super-conducting proton linear accelerator (linac) that supplies neutrons to an 800-MW subcritical reactor by a spallation process. The major challenge for an ADS linac is the strict control of the beam trip duration and its frequency to avoid thermal stress in the subcritical reactor structures. The maximum allowed beam trips for failures longer than a few seconds are estimated to be far below the rate achieved in current accelerators. Thus, we implemented a combination of hot standby and local compensation that enables a fast beam recovery. This work comprehensively investigated the tolerance of our linac lattice for the local compensations for failures in superconducting cavities and magnets. This scheme includes simultaneous compensation of multiple cavities in independent and same cryomodules that significantly enhance the reliability of the linac. The returned schemes present acceptable beam performance to guarantee the integrity of the linac and the beam transport to the target; moreover, they satisfy the beam stability in the beam window. In addition, the readjusted elements are subjected to moderate stress to ensure a sustainable operation. This manuscript reports the beam dynamics results toward fulfilling the high reliability demanded by an ADS linac.
Honda, Maki; Martschini, M.*; Marchhart, O.*; Priller, A.*; Steier, P.*; Golser, R.*; Sato, Tetsuya; Tsukada, Kazuaki; Sakaguchi, Aya*
Analytical Methods, 14(28), p.2732 - 2738, 2022/07
Times Cited Count:4 Percentile:52.48(Chemistry, Analytical)The sensitive Sr analysis with accelerator mass spectrometry (AMS) was developed for the advances of environmental radiology. One advantage of AMS is the ability to analyze various environmental samples with Sr/Sr atomic ratios of 10 in a simple chemical separation. Three different IAEA samples with known Sr concentrations (moss-soil, animal bone, Syrian soil: 1 g each) were analyzed to assess the validity of the chemical separation and the AMS measurement. The Sr measurements were conducted on the AMS system combined with the Ion Laser InterAction MasSpectrometry (ILIAMS) setup at the University of Vienna, which has excellent isobaric separation performance. The isobaric interference of Zr in the Sr AMS was first removed by chemical separation. The separation factor of Zr in two-step column chromatography with Sr resin and anion exchange resin was 10. The Zr remaining in the sample was removed by ILIAMS effectively. This simple chemical separation achieved a limit of detection 0.1 mBq in the Sr AMS, which is lower than typical -ray detection. The agreement between AMS measurements and nominal values for the Sr concentrations of IAEA samples indicated that the new highly-sensitive Sr analysis in the environmental samples with AMS is reliable even for high matrix samples of soil and bone.
Maekawa, Fujio
Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.201 - 205, 2022/05
The nuclear transmutation technology is a powerful solution to the "nuclear waste" problem that accompanies nuclear power generation. The Accelerator Driven System (ADS), which combines a high-intensity accelerator and a subcritical core, is a promising tool for nuclear transmutation. In this paper, we will explain the significance and principle of nuclear transmutation by ADS, design examples of ADS, partitioning and transmutation technology and its effects, required performance of high-intensity accelerators, overseas trends, etc.
Maekawa, Fujio; Takei, Hayanori
Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05
In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.