Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 6904

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Uncertainty quantification for severe-accident reactor modelling; Results and conclusions of the MUSA reactor applications work package

Brumm, S.*; Gabrielli, F.*; Sanchez Espinoza, V.*; Stakhanova, A.*; Groudev, P.*; Petrova, P.*; Vryashkova, P.*; Ou, P.*; Zhang, W.*; Malkhasyan, A.*; et al.

Annals of Nuclear Energy, 211, p.110962_1 - 110962_16, 2025/02

 Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Characterization of neutrons emitted by an expected small amount of fuel debris in a trial retrieval from Fukushima Daiichi Nuclear Power Station

Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*

Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02

Journal Articles

Development of a dissolution method for analyzing the elemental composition of fuel debris using sodium peroxide fusion technique

Nakamura, Satoshi; Ishii, Sho*; Kato, Hitoshi*; Ban, Yasutoshi; Hiruta, Kenta; Yoshida, Takuya; Uehara, Hiroyuki; Obata, Hiroki; Kimura, Yasuhiko; Takano, Masahide

Journal of Nuclear Science and Technology, 62(1), p.56 - 64, 2025/01

A dissolution method for analyzing the elemental composition of fuel debris using the sodium peroxide (Na$$_{2}$$O$$_{2}$$) fusion technique has been developed. Herein, two different types of simulated debris materials (such as solid solution of (Zr,RE)O$$_{2}$$ and molten core-concrete interaction products (MCCI)) were taken. At various temperatures, these debris materials were subsequently fused with Na$$_{2}$$O$$_{2}$$ in crucibles, which are made of different materials, such as Ni, Al$$_{2}$$O$$_{3}$$, Fe, and Zr. Then, the fused samples are dissolved in nitric acid. Furthermore, the effects of the experimental conditions on the elemental composition analysis were evaluated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), which suggested the use of a Ni crucible at 923 K as an optimum testing condition. The optimum testing condition was then applied to the demonstration tests with Three Mile Island unit-2 (TMI-2) debris in a shielded concrete cell, thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris revealed by the proposed dissolution method has good reproducibility and has an insignificant contradiction in the mass balance of the sample. Therefore, this newly developed reproducible dissolution method can be effectively utilized in practical applications by dissolving fuel debris and estimating its elemental composition.

Journal Articles

In-situ detection of high-energy beta ray emitter $$^{90}$$Sr/$$^{90}$$Y inside the Fukushima Daiichi Nuclear Power Station Unit 3 reactor building using a liquid light guide Cherenkov counter

Terasaka, Yuta; Sato, Yuki; Furuta, Yoshihiro*; Kubo, Shin*; Ichiba, Yuta*

Nuclear Instruments and Methods in Physics Research A, 1070(2), p.170021_1 - 170021_9, 2025/01

 Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)

Journal Articles

Environmental geochemistry of radionuclides (Environmental radiochemistry)

Takahashi, Yoshio*; Yamaguchi, Akiko; Yomogida, Takumi

Treatise on Geochemistry, 3rd edition, Vol.6, 46 Pages, 2025/00

With the recent development of measurement techniques, new approaches to the environmental geochemistry of radionuclides have been applied for various research targets. In this review article, several topics within the last 10-15 years in the field of environmental geochemistry of radionuclides have been discussed. In particular, this article mainly focused on two topics, (i) studies on the migration of radionuclides emitted by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 and (ii) the development of X-ray absorption fine structure (XAFS) spectroscopy and its application to the geochemical processes of radionuclides.

JAEA Reports

Proceedings of the 9th "Conference for R&D Initiative on Nuclear Decommissioning Technology by the Next Generation"

Usami, Hiroshi; Ito, Rintaro; Tagawa, Akihiro

JAEA-Review 2024-045, 49 Pages, 2024/12

JAEA-Review-2024-045.pdf:13.38MB

The decommissioning of the TEPCO's Fukushima Daiichi Nuclear Power Station is a long-term project, and the training of young engineers and researchers who will be responsible for future decommissioning is a necessary and urgent task. Since 2016, Collaborative Laboratories for Advanced Decommissioning Science has been continuously organizing "Conferences for R&D Initiative on Nuclear Decommissioning Technology by the Next Generation (NDEC)" for students who are engaged in research activities for decommissioning. NDEC is a forum for students to present their research for the purpose of human resource development and networking among young researchers, and to increase their motivation for decommissioning research. NDEC-9 was held at "Manabi-no-Mori" in Tomioka-machi, Fukushima Prefecture, from March 21-22, 2024. This proceeding compiles the contents of report papers in the conference.

JAEA Reports

Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2024-016, 61 Pages, 2024/12

JAEA-Review-2024-016.pdf:2.88MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of a high-resolution imaging camera for alpha dust and high-dose rate monitor" conducted in FY2022. The present study aims to develop a high-resolution imaging camera for alpha dust and a high-dose rate monitor. To realize the high-resolution imaging camera for alpha dust, we have developed novel scintillation materials with emission bands of 500-800 nm. Moreover, we have prepared several materials for the camera and software. We have also developed novel scintillation materials with emission bands of 650-1,000 nm, and simulation studies have been conducted for the high-dose-rate monitor system consisting of optical fiber.

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-03; 0.2% pressure vessel bottom break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2024-014, 76 Pages, 2024/12

JAEA-Data-Code-2024-014.pdf:4.0MB

An experiment denoted as SB-PV-03 was conducted on November 19, 2002 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-03 simulated a 0.2% pressure vessel bottom small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system of emergency core cooling system (ECCS) and noncondensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of ECCS. Secondary-side depressurization of both steam generators (SGs) as an accident management (AM) action to achieve the depressurization rate of 55 K/h in the primary system was initiated 10 min after the generation of a safety injection signal, and continued afterwards. Auxiliary feedwater injection into the secondary-side of both SGs was started for 30 min with some delay after the onset of the AM action. The AM action was effective on the primary depressurization until the ACC tanks began to discharge nitrogen gas into the primary system. The core liquid level recovered in oscillative manner because of intermittent coolant injection from the ACC system into both cold legs. Therefore, the core liquid level remained at a small drop. The pressure difference between the primary and SG secondary sides became larger after nitrogen gas ingress. Core uncovery occurred by core boil-off during reflux condensation in the SG U-tubes under nitrogen gas influx. When the maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 908 K, the core power was automatically reduced to protect the LSTF core. After the automatic core power reduction, coolant injection from low pressure injection (LPI) system of ECCS into both cold legs led to the whole core quench. After the continuous core cooling was confirmed through the actuation of the LPI system, the experiment was terminated.

Journal Articles

Study on the specifications of the basic core configurations of the modified STACY

Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya

Annals of Nuclear Energy, 209, p.110783_1 - 110783_7, 2024/12

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, the Japan Atomic Energy Agency (JAEA) has been modifying a critical assembly called "STACY." The first criticality of the modified STACY is scheduled for spring 2024. This paper reports the consideration results of the specifications of the basic core configurations of the modified STACY at the first criticality. We prepared two types of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO$$_{2}$$ fuel rods. The core configurations for the first criticality satisfying these experimental constraints were designed by computational analysis. A cylindrical core configuration with a 1.50 cm grid plate close to the optimum moderation condition needs 253 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered core configurations with 2.54 cm intervals by using doubled pitches of the grid plate. It will need 213 fuel rods for the criticality. In addition, we considered the experimental core configuration with steel/concrete simulant rods to simulate fuel debris conditions. This paper shows these core configurations and their evaluated specifications.

Journal Articles

Possible criticality scenario and its mechanism of the Windscale Works criticality accident in 1970 analyzed by computational fluid dynamics and Monte Carlo neutron transport

Fukuda, Kodai

Annals of Nuclear Energy, 208(1), p.110748_1 - 110748_10, 2024/12

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

New insight on the thermal impact on cementitious materials due to high-temperature with water supply; Continuous expansive spalling in water

Miura, Taito*; Miyamoto, Shintoro*; Maruyama, Ippei*; Aili, A.*; Sato, Takumi; Nagae, Yuji; Igarashi, Go*

Case Studies in Construction Materials, 21, p.e03571_1 - e03571_14, 2024/12

 Times Cited Count:0 Percentile:0.00(Construction & Building Technology)

Journal Articles

Assessment of individual external exposure doses based on environmental radiation in areas affected by the Fukushima Daiichi Nuclear Power Station accident

Sato, Rina; Yoshimura, Kazuya; Sanada, Yukihisa; Mikami, Satoshi; Yamada, Tsutomu*; Nakasone, Takamasa*; Kanaizuka, Seiichi*; Sato, Tetsuro*; Mori, Tsubasa*; Takagi, Marie*

Environmental Science & Technology, 194, p.109148_1 - 109148_8, 2024/12

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

Assessment of individual external doses from ambient dose equivalents is used for predictive and retrospective assessments where personal dosimeters are not applicable. However, it tends to contain more errors than assessment by personal dosimetry due to various parameters. Therefore, in order to accurately assess the individual dose from ambient dose equivalents, a model that estimates effective doses considering life patterns and the shielding effects by buildings and vehicles, were developed in this study. The model parameters were examined using robust datasets of environmental radiation measured in the areas affected by the Fukushima Daiichi Nuclear Power Station accident in 2020 to 2021. The accuracy of the model was validated by comparison with 106 daily personal doses measured in Fukushima Prefecture in 2020. The measured personal dose was well reproduced by the model-estimated effective dose, showing that the model can be used to assess the individual exposure dose, similar to personal dosimetry. Furthermore, this model is an effective tool for radiation protection, as it can estimate the individual dose predictively and retrospectively by using environmental radiation data.

Journal Articles

Integrated radiation air dose rate maps over the 80 km radius of the Fukushima Daiichi Nuclear Power Plant and the entire Fukushima Prefecture during 2011-2022

Sakuma, Kazuyuki; Kurikami, Hiroshi; Wainwright, Haruko*; Tanimori, Soichiro*; Nagao, Fumiya; Ochi, Kotaro; Sanada, Yukihisa; Saito, Kimiaki

Journal of Environmental Radioactivity, 280, p.107554_1 - 107554_11, 2024/12

 Times Cited Count:0 Percentile:0.00(Environmental Sciences)

In this study, we created the integrated radiation air dose rate maps in the Fukushima region during 2011-2022 using multiple types of surveys such as air-borne, car-borne and walk surveys as well as fixed-location measurements. We applied the Bayesian geostatistical method developed by Wainwright et al. (2017, 2019) to the 80 km radius of the Fukushima Dai-ichi Nuclear Power Plant and the whole of Fukushima Prefecture while considering the history of the lifting of the evacuation zone in Fukushima. The integrated maps fixed the bias to underestimate air dose rates in forest areas, and successfully created more reproducible integrated maps with a wider area and time series than the previous studies. It is highly expected that the results of this study will be used to evaluate detailed exposure doses to the general public.

Journal Articles

Image selection method from image sequence to improve computational efficiency of 3D reconstruction; Application of fixed threshold to remove redundant images

Hanari, Toshihide; Nakamura, Keita*; Imabuchi, Takashi; Kawabata, Kuniaki

Journal of Robotics and Mechatronics, 36(6), p.1537 - 1549, 2024/12

This paper describes three-dimensional (3D) reconstruction processes introducing the image selection method for efficiently generating a 3D model from an image sequence. To obtain suitable images for efficient 3D reconstruction, we tried to apply the image selection method to remove the redundant images in the image sequence. By the proposed method, the suitable images were selected from the image sequence based on optical flow measures and a fixed threshold. As a result, the proposed method can reduce the computational cost for the 3D reconstruction processes based on the image sequence acquired by the camera. We confirmed that the computational cost of the 3D reconstruction processes can reduce while keeping the 3D reconstruction accuracy at a constant level.

JAEA Reports

Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokai National Higher Education and Research System*

JAEA-Review 2024-027, 77 Pages, 2024/11

JAEA-Review-2024-027.pdf:6.0MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development and evaluation of a real-time 3D positioning embedded system combining wireless UWB and camera image analysis" conducted in FY2022. The present study aims to realize an embedded system that combines two of the latest popular technologies, "wireless UWB (Ultra Width Band)" and "multi-camera object recognition," with the goal of simple realtime 3D positioning with less than 10 cm accuracy by a human or robot for measuring air doses in nuclear reactor buildings.

JAEA Reports

Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Yokohama National University*

JAEA-Review 2024-024, 88 Pages, 2024/11

JAEA-Review-2024-024.pdf:4.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles" conducted in FY2022. The present study aims to develop a wireless system, sensor positioning algorithms, and wireless area formation technology for electromagnetically shielded areas. We developed a base station antenna and a sensor node that use 2.45 GHz for downlink and 4.9 GHz, which is the second harmonic, for uplink. We also confirmed that the developed circuit and antenna operate in a strong radioactive environment.

JAEA Reports

Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc. (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2024-021, 126 Pages, 2024/11

JAEA-Review-2024-021.pdf:6.51MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Study on water stopping, repair and stabilization of lower PCV by geopolymer, etc" conducted in FY2022. The present study aims to propose a construction method to stop jet deflectors by improved geopolymer and ultra-heavy muddy water, and to repair the lower part of the dry well. In addition, in order to increase the options for on-site construction in unknown situations such as deposition conditions, we will examine a wide range of construction outside the pedestal, and evaluate the feasibility of the construction method by the latest thermal flow simulation method.

Journal Articles

4.1.2 BWR lower head penetration failure test focusing on eutectic melting

Yamashita, Takuya

Fukushima Daiichi Nuclear Power Station Accident Information Collection and Evaluation (FACE) Project Annual Report 2023, p.55 - 62, 2024/11

Journal Articles

Performance study of a new LiCAF:Ce detector developed for high-efficient neutron detection in intense $$gamma$$-ray fields

Kaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*

Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11

Journal Articles

Droplet evaporation characteristics on high-temperature porous surfaces for cooling fuel debris

Yuki, Kohei*; Horiguchi, Naoki; Yoshida, Hiroyuki; Yuki, Kazuhisa*

Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 4 Pages, 2024/11

Fuel debris in the Fukushima Nuclear Power Station is cooled under immersion condition. However, in the event of an unexpected decrease in water level, coolant contacts high-temperature fuel debris having porous structure. In this event, although fuel debris needs to be cooled rapidly, thermal behavior at liquid-solid contact, such as capillary phenomenon, remains unclear. In this paper, as basic research, we evaluate droplet evaporation characteristics after contact with metal porous media with small pores less than 1 mm. In experiment, to obtain life time curve of a droplet, bronze or stainless steel porous media having 1, 40, or 100 $$mu$$m pore diameter are utilized. Experimental results show that Leidenfrost phenomenon is suppressed on the porous surfaces because generated vapor can be discharged from the pores. Further, for bronze porous media, capillary phenomenon is observed as the temperature of the porous media increase because of generation of oxide film having fine structure. On the other hand, due to low wettability of stainless steel porous media, capillary phenomenon does not occur, and the droplet was not sucked and spread into pore. This indicates that rapid cooling by the capillary phenomenon can not be expected if fuel debris has the same characteristics as the stainless steel porous media.

6904 (Records 1-20 displayed on this page)