Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Installation of engineered barrier system and backfilling the test niche at the 350m gallery

Nakayama, Masashi; Ono, Hirokazu

JAEA-Research 2019-007, 132 Pages, 2019/12

JAEA-Research-2019-007.pdf:11.29MB
JAEA-Research-2019-007-appendix(CD-ROM).zip:39.18MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies". The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows following works had carried out at the GL-350 m gallery. Excavation of a test niche and a test pit, Setting buffer material blocks and a simulated overpack into the test pit, Backfilling the niche by compaction backfilling material and setting backfilling material blocks, Casting concrete type plug and contact grouting, Consolidate measurement system and start measuring.

Journal Articles

A Study of methods to prevent piping and erosion in buffer materials intended for a vertical deposition hole at the Horonobe Underground Research Laboratory

Jo, Mayumi*; Ono, Makoto*; Nakayama, Masashi; Asano, Hidekazu*; Ishii, Tomoko*

Geological Society Special Publications, 482, 16 Pages, 2018/09

 Times Cited Count:1 Percentile:17.46

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Production of casing drilling machine for large dimeter pit, simulated overpack, buffer material blocks and backfilling materials

Nakayama, Masashi; Matsuzaki, Tatsuji*; Niunoya, Sumio*

JAEA-Research 2016-010, 57 Pages, 2016/08

JAEA-Research-2016-010.pdf:10.81MB
JAEA-Research-2016-010-appendix(CD-ROM).zip:31.42MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal -Hydrological - Mechanical - Chemical coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In this report, It is summarized the production of casing drilling machine for large diameter, simulated overpack, buffer material blocks and backfilling material for EBS experiment.

Journal Articles

Characterization of Fe-montmorillonite; A Simulant of buffer materials accommodating overpack corrosion product

Kozai, Naofumi; Adachi, Yoshifusa*; Kawamura, Sachi*; Inada, Koichi*; Kozaki, Tamotsu*; Sato, Seichi*; Ohashi, Hiroshi*; Onuki, Toshihiko; Bamba, Tsunetaka

Journal of Nuclear Science and Technology, 38(12), p.1141 - 1143, 2001/12

This study briefly reports characteristics of Fe-montmorillonite. Fe-montmorillonite was used as a simulant of buffer material in which corrosion products of carbon steel overpack, Fe$$^{2+}$$, were diffused. We have found that this clay retains Se(VI) for which natural montmorillonite, such as Na+-type and Ca$$^{2+}$$-type, has little retentivity.

Journal Articles

Sorption behavior of neptunium on bentonite; Effect of calcium ion on the sorption

Kozai, Naofumi; Onuki, Toshihiko; Muraoka, Susumu

Materials Research Society Symposium Proceedings, Vol.353, 0, p.1021 - 1028, 1995/00

no abstracts in English

Journal Articles

Analysis on evolving environments of engineered barriers of high-level radioactive waste repositories during the first 1,000 years

*; *; *; *; *; *; ; Nagasaki, Shinya*

Nihon Genshiryoku Gakkai-Shi, 35(5), p.420 - 437, 1993/05

 Times Cited Count:6 Percentile:56.75(Nuclear Science & Technology)

no abstracts in English

Oral presentation

The In-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory, 8; Plan of measurement for buffer material

Shirase, Mitsuyasu*; Jo, Mayumi*; Motoshima, Takayuki*; Niunoya, Sumio*; Nakayama, Masashi; Tanai, Kenji

no journal, , 

no abstracts in English

Oral presentation

Current status of the in-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory

Nakayama, Masashi; Ono, Hirokazu; Shirase, Mitsuyasu*; Niunoya, Sumio*

no journal, , 

Japan Atomic Energy Agency is conducting the in-situ experiment for verification of performance of engineered barrier system in Horonobe Underground Research Laboratory. The purpose of this paper is reporting the current status of the experiment. This paper also reports the results of saturation status of buffer material blocks.

Oral presentation

Study on methods to prevent piping and erosion in buffer materials intended for a vertical disposal pit, at Horonobe URL

Jo, Mayumi*; Iwatani, Takafumi*; Kawakubo, Masahiro*; Ishii, Tomoko*; Ono, Makoto*; Nakayama, Masashi

no journal, , 

For the purpose of "maintaining the soundness of the artificial barrier", we are studying "restraints on the outflow of the buffer material". We conducted an experiment of a scale of 30 cm to 1 m in an actual underground environment and confirmed the occurrence of the buffer material outflow under water inflow conditions. The experiment in this study was undertaken in order to acquire the necessary data for considering a method to control the outflow of the buffer material.

Oral presentation

Countermeasures against piping and erosion of bentonite buffer; Piping inhibition due to pre-hydration

Shirase, Mitsuyasu*; Ishii, Tomoko*; Kobayashi, Ichizo*; Jo, Mayumi*; Ono, Makoto*; Nakayama, Masashi

no journal, , 

A candidate emplacement concept of the engineered barrier system (EBS) for geological disposal in Japan is vertical emplacement option, which has a certain gap is between the wall of the disposal hole and the buffer material. This gap is considered to be filled with the swollen buffer material (self-sealing function) when the underground water is infiltrated to the buffer material. However, some underground water flow conditions such as a pipe-shaped water channel induce erosion of the buffer material, which causes lowering of the function of the EBS. Therefore, RWMC (Radioactive Waste Management Funding and Research Center) studies engineering countermeasures against piping and erosion. RWMC used an intentional water supply system to test the pre-hydration of bentonite buffers.

11 (Records 1-11 displayed on this page)
  • 1