Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 467

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Post-test analyses of the CMMR-4 test

Yamashita, Takuya; Madokoro, Hiroshi; Sato, Ikken

Journal of Nuclear Engineering and Radiation Science, 8(2), p.021701_1 - 021701_13, 2022/04

Journal Articles

A 3D particle-based analysis of molten pool-to-structural wall heat transfer in a simulated fuel subassembly

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10

For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.

JAEA Reports

Report of summer holiday practical training 2020; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 3

Ishitsuka, Etsuo; Mitsui, Wataru*; Yamamoto, Yudai*; Nakagawa, Kyoichi*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Nagasumi, Satoru; Takamatsu, Kuniyoshi; Kenzhina, I.*; et al.

JAEA-Technology 2021-016, 16 Pages, 2021/09

JAEA-Technology-2021-016.pdf:1.8MB

As a summer holiday practical training 2020, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the downsizing of reactor core were studied by the MVP-BURN. As a result, it is clear that a 1.6 m radius reactor core, containing 54 (18$$times$$3 layers) fuel blocks with 20% enrichment of $$^{235}$$U, and BeO neutron reflector, could operate continuously for 30 years with thermal power of 5 MW. Number of fuel blocks of this compact core is 36% of the HTTR core. As a next step, the further downsizing of core by changing materials of the fuel block will be studied.

JAEA Reports

Mesh effect around burnable poison rod of cell model for HTTR fuel block

Fujimoto, Nozomu*; Fukuda, Kodai*; Honda, Yuki*; Tochio, Daisuke; Ho, H. Q.; Nagasumi, Satoru; Ishii, Toshiaki; Hamamoto, Shimpei; Nakano, Yumi*; Ishitsuka, Etsuo

JAEA-Technology 2021-008, 23 Pages, 2021/06

JAEA-Technology-2021-008.pdf:2.62MB

The effect of mesh division around the burnable poison rod on the burnup calculation of the HTTR core was investigated using the SRAC code system. As a result, the mesh division inside the burnable poison rod does not have a large effect on the burnup calculation, and the effective multiplication factor is closer to the measured value than the conventional calculation by dividing the graphite region around the burnable poison rod into a mesh. It became clear that the mesh division of the graphite region around the burnable poison rod is important for more appropriately evaluating the burnup behavior of the HTTR core..

JAEA Reports

Data report of ROSA/LSTF experiment SB-PV-09; 1.9% pressure vessel top small break LOCA with SG depressurization and gas inflow

Takeda, Takeshi

JAEA-Data/Code 2021-006, 61 Pages, 2021/04

JAEA-Data-Code-2021-006.pdf:2.78MB

An experiment denoted as SB-PV-09 was conducted on November 17, 2005 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF experiment SB-PV-09 simulated a 1.9% pressure vessel top small-break loss-of-coolant accident in a pressurized water reactor (PWR). The test assumptions included total failure of high pressure injection system and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator (ACC) tanks of emergency core cooling system (ECCS). In the experiment, liquid level in the upper-head was found to control break flow rate. When maximum core exit temperature reached 623 K, steam generator (SG) secondary-side depressurization was initiated by fully opening the relief valves in both SGs as an accident management (AM) action. The AM action, however, was ineffective on the primary depressurization until the SG secondary-side pressure decreased to the primary pressure. Meanwhile, the core power was automatically reduced when maximum cladding surface temperature of simulated fuel rods exceeded the pre-determined value of 958 K to protect the LSTF core due to late and slow response of core exit temperature. After the automatic core power reduction, loop seal clearing (LSC) was induced in both loops by steam condensation on the ACC coolant injected into cold legs. The whole core was quenched because of core recovery after the LSC. After the ACC tanks started to discharge nitrogen gas, the pressure difference between the primary and SG secondary sides became larger. After the continuous core cooling was confirmed through the actuation of low pressure injection system of ECCS, the experiment was terminated. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-PV-09.

Journal Articles

High temperature gas-cooled reactors

Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.

High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02

As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950$$^{circ}$$C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.

JAEA Reports

Data report of ROSA/LSTF experiment SB-SL-01; Main steam line break accident

Takeda, Takeshi

JAEA-Data/Code 2020-019, 58 Pages, 2021/01

JAEA-Data-Code-2020-019.pdf:3.85MB

An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.

Journal Articles

Numerical simulation of heat transfer behavior in EAGLE ID1 in-pile test using finite volume particle method

Zhang, T.*; Funakoshi, Kanji*; Liu, X.*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji

Annals of Nuclear Energy, 150, p.107856_1 - 107856_10, 2021/01

 Times Cited Count:1 Percentile:81.22(Nuclear Science & Technology)

JAEA Reports

Report of summer holiday practical training 2019; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design, 2

Ishitsuka, Etsuo; Nakashima, Koki*; Nakagawa, Naoki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Matsuura, Hideaki*; et al.

JAEA-Technology 2020-008, 16 Pages, 2020/08

JAEA-Technology-2020-008.pdf:2.98MB

As a summer holiday practical training 2019, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out, and the $$^{235}$$U enrichment and burnable poison of the fuel, which enables continuous operation for 30 years with thermal power of 5 MW, were studied by the MVP-BURN. As a result, it is clear that a fuel with $$^{235}$$U enrichment of 12%, radius of burnable poison and natural boron concentration of 1.5 cm and 2wt% are required. As a next step, the downsizing of core will be studied.

Journal Articles

Validation of analysis models on relocation behavior of molten core materials in sodium-cooled fast reactors based on the melt discharge experiment

Igarashi, Kai*; Onuki, Ryoji*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 6 Pages, 2020/08

Journal Articles

Four-point-bend tests on high-burnup advanced fuel cladding tubes after exposure to simulated LOCA conditions

Narukawa, Takafumi; Amaya, Masaki

Journal of Nuclear Science and Technology, 57(7), p.782 - 791, 2020/07

 Times Cited Count:2 Percentile:62.87(Nuclear Science & Technology)

JAEA Reports

Study on control rod model in HTTR core analysis

Nagasumi, Satoru; Matsunaka, Kazuaki*; Fujimoto, Nozomu*; Ishii, Toshiaki; Ishitsuka, Etsuo

JAEA-Technology 2020-003, 13 Pages, 2020/05

JAEA-Technology-2020-003.pdf:1.5MB

The influence of the control rod model on the nuclear characteristics of the HTTR has been evaluated, by creating detailed control rod model, in which geometric shape was close to that of the actual control rod structure, in MVP code. According to refinement of the control rod model, the critical control rod position was 11 mm lower than that of the conventional model, and this was close to the measured value of 1775 mm. The reactivity absorbed by the shock absorber located at the tip of the control rod was 0.2%$$Delta$$k/k, and this was 14 mm difference at the critical control rod position. Considering the effect of refinement of the control rod and the effect of the shock absorber, the correction amount for the analysis value in SRAC code due to the shape effect of the control rod, is -0.05%$$Delta$$k/k in reactivity, and -3 mm in the critical control rod position at low temperature criticality.

Journal Articles

Development of experimental technology for simulated fuel-assembly heating to address core-material-relocation behavior during severe accident

Abe, Yuta; Yamashita, Takuya; Sato, Ikken; Nakagiri, Toshio; Ishimi, Akihiro

Journal of Nuclear Engineering and Radiation Science, 6(2), p.021113_1 - 021113_9, 2020/04

Journal Articles

Leaching behavior of prototypical Corium samples; A Step to understand the interactions between the fuel debris and water at the Fukushima Daiichi reactors

Nakayoshi, Akira; Jegou, C.*; De Windt, L.*; Perrin, S.*; Washiya, Tadahiro

Nuclear Engineering and Design, 360, p.110522_1 - 110522_18, 2020/04

 Times Cited Count:5 Percentile:84.6(Nuclear Science & Technology)

Journal Articles

Overlapping communications in gyrokinetic codes on accelerator-based platforms

Asahi, Yuichi*; Latu, G.*; Bigot, J.*; Maeyama, Shinya*; Grandgirard, V.*; Idomura, Yasuhiro

Concurrency and Computation; Practice and Experience, 32(5), p.e5551_1 - e5551_21, 2020/03

 Times Cited Count:0 Percentile:0.01(Computer Science, Software Engineering)

Two five-dimensional gyrokinetic codes GYSELA and GKV were ported to the modern accelerators, Xeon Phi KNL and Tesla P100 GPU. Serial computing kernels of GYSELA on KNL and GKV on P100 GPU were respectively 1.3x and 7.4x faster than those on a single Skylake processor. Scaling tests of GYSELA and GKV were respectively performed from 16 to 512 KNLs and from 32 to 256 P100 GPUs, and data transpose communications in semi-Lagrangian kernels in GYSELA and in convolution kernels in GKV were found to be main bottlenecks, respectively. In order to mitigate the communication costs, pipeline-based and task-based communication overlapping were implemented in these codes.

JAEA Reports

Report of summer holiday practical training 2018; Feasibility study on nuclear battery using HTTR core; Feasibility study for nuclear design

Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.

JAEA-Technology 2019-008, 12 Pages, 2019/07

JAEA-Technology-2019-008.pdf:2.37MB

As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.

Journal Articles

Study on the discharge behavior of molten-core through the control rod guide tube in the core disruptive accident of SFR

Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji; Ganovichev, D. A.*; Baklanov, V. V.*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

In order to ensure In-Vessel Retention (IVR) of molten-core in Core Disruptive Accident (CDA), we are investigating the possibility of the molten-core discharge through the control rod guide tube (CRGT) to prevent energetics due to exceeding the prompt criticality. Internal structures of the CRGT, such as a sodium-flow regulator when the CRGT is connected to the high-pressure plenum, may disturb the discharge of molten-core from the core region. Based on above background, an experimental program to clarify characteristics of molten-core discharge through the CRGT has been commenced as one of subjects under a joint study with National Nuclear Center of the Republic of Kazakhstan (NNC-RK) named EAGLE-3 project. An experiment using molten-alumina as fuel simulant and sodium was conducted at the out-of-pile test facility owned by NNC-RK to investigate sodium cooling effect around the sodium flow regulator on its destruction. The experimental result represented that void development at the initiation of molten-alumina discharge eliminated liquid-phase sodium from the discharge path and this also eliminated sodium cooling effect around the sodium flow regulator. As a result, early destruction of the sodium flow regulator and massive discharge of molten alumina occurred in turn.

Journal Articles

Routing study of above core structure with mock-up experiment for ASTRID

Takano, Kazuya; Sakamoto, Yoshihiko; Morohoshi, Kyoichi*; Okazaki, Hitoshi*; Gima, Hiromichi*; Teramae, Takuma*; Ikarimoto, Iwao*; Botte, F.*; Dirat, J.-F.*; Dechelette, F.*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05

ASTRID has the objective to integrate innovative options in order to prepare the 4th generation reactors. In ASTRID, large number of tubes are installed above each fuel subassembly to monitor the core. These instrumentations such as thermocouples (TC) and Failed Fuel Detection and Location (FFDL) systems are integrated into Above Core Structure (ACS) with various sizes tubes. In the present study, the routing study for TC tubes and FFDL tubes was performed with 3D modeling and mock-up experiment of the ACS designed for ASTRID with 1500 MW thermal power in order to clarify the integration process and secure the design hypotheses. Although some problems on fabricability were found in the mock-up experiment, the possible solutions were proposed. The present study gives manufacturing feedback to design team and will contribute to increase the knowledge for ACS design and fabricability.

Journal Articles

Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core

Ikuta, Daijo*; Otani, Eiji*; Sano, Asami; Shibazaki, Yuki*; Terasaki, Hidenori*; Yuan, L.*; Hattori, Takanori

Scientific Reports (Internet), 9, p.7108_1 - 7108_8, 2019/05

 Times Cited Count:12 Percentile:86.74(Multidisciplinary Sciences)

Hydrogen is likely one of the light elements in the Earth's core. Despite its importance, no direct observation has been made of hydrogen in an iron lattice at high pressure. We made the first direct determination of site occupancy and volume of interstitial hydrogen in a face-centered cubic (fcc) iron lattice up to 12 GPa and 1200 K using the in situ neutron diffraction method. At pressures $$<$$ 5 GPa, the hydrogen content in the fcc iron hydride lattice (x) was small at x $$<$$ 0.3, but increased to x $$>$$ 0.8 with increasing pressure. Hydrogen atoms occupy both octahedral (O) and tetrahedral (T) sites; typically 0.870 in O-sites and 0.057 in T-sites at 12 GPa and 1200 K. The fcc lattice expanded approximately linearly at a rate of 2.22 $AA $^{3}$$ per hydrogen atom, which is higher than previously estimated (1.9 $AA $^{3}$$/H). The lattice expansion by hydrogen dissolution was negligibly dependent on pressure. The large lattice expansion by interstitial hydrogen reduced the estimated hydrogen content in the Earth's core that accounted for the density deficit of the core. The revised analyses indicate that whole core may contain hydrogen of 80 times of the ocean mass with 79 and 0.8 ocean mass for the outer and inner cores, respectively.

Journal Articles

Particle-based simulation of heat transfer behavior in EAGLE ID1 in-pile test

Morita, Koji*; Ogawa, Ryusei*; Tokioka, Hiromi*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Proceedings of 12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-12) (USB Flash Drive), 11 Pages, 2018/10

The EAGLE in-pile ID1 test has been performed by Japan Atomic Energy Agency to demonstrate early fuel discharge from a fuel subassembly with an inner duct structure, which is named FAIDUS. It was deduced that early duct wall failure observed in the test was initiated by high heat flux from the molten pool of fuel and steel mixture. The posttest analyses suggest that molten pool-to-duct wall heat transfer might be enhanced effectively by the molten steel with large thermal conductivity in the pool without the presence of fuel crust on the duct wall. In this study, mechanisms of heat transfer from the molten pool to the duct wall was analyzed using a fully Lagrangian approach based on the finite volume particle method for multi-component, multi-phase flows. A series of pin disruption, molten pool formation and duct wall failure behaviors was simulated to investigate mixing and separation behavior of molten steel and fuel in the pool, and their effect on molten pool-to-duct wall heat transfer. The present 2D particle-based simulations demonstrated that large thermal load beyond 10 MW/m$$^{2}$$ on the duct wall was caused by effective heat transfer due to direct contact of liquid fuel with nuclear heat to the duct wall.

467 (Records 1-20 displayed on this page)