Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a short-term emergency assessment system of the marine environmental radioactivity around Japan

Kobayashi, Takuya; Kawamura, Hideyuki; Fujii, Katsuji*; Kamidaira, Yuki

Journal of Nuclear Science and Technology, 54(5), p.609 - 616, 2017/05

 Times Cited Count:9 Percentile:74.4(Nuclear Science & Technology)

The Japan Atomic Energy Agency has, for many years, been developing a radionuclide dispersion model for the ocean, and has validated the model through application in many sea areas using oceanic flow fields calculated by the ocean model. The Fukushima Dai-ichi Nuclear Power Station accident caused marine pollution by artificial radioactive materials to the North Pacific, especially to coastal waters northeast of mainland Japan. In order to investigate the migration of radionuclides in the ocean caused by this severe accident, studies using marine dispersion simulations have been carried out by JAEA. Based on these as well as the previous studies, JAEA has developed the Short-Term Emergency Assessment system of Marine Environmental Radioactivity (STEAMER) to immediately predict the radionuclide concentration around Japan in case of a nuclear accident.

Oral presentation

Development of an emergency assessment system of the marine environmental radioactivity around Japan and its utilization

Kobayashi, Takuya; Kawamura, Hideyuki; Fujii, Katsuji*; Kamidaira, Yuki

no journal, , 

The Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident in Japan in March 2011 led to the release of large amounts of radionuclides into the atmosphere as well as direct discharges into the ocean. Various environmental assessments have been performed by many research groups using marine dispersion simulations after the FNPS1 accident. It was recognized from these woks that the risk of radionuclide release from nuclear facilities to the environment was very high and the establishment of emergency ocean dispersion forecasting systems was necessary. Then, the Japan Atomic Energy Agency (JAEA) has developed the Short-Term Emergency Assessment system of Marine Environmental Radioactivity (STEAMER) to immediately predict the radionuclide migration for a nuclear accident in ocean around Japan, by integrating previous study results. In this study, structure, performance test results, and utilization of the system are described.

2 (Records 1-2 displayed on this page)
  • 1