Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Safety enhancement approach against external hazard on JSFR reactor building

Yamamoto, Tomohiko; Kato, Atsushi; Chikazawa, Yoshitaka; Hara, Hiroyuki*

Nuclear Technology, 206(12), p.1875 - 1890, 2020/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This paper gives a detailed evaluation of the countermeasures for the external hazards and severe accidents that could impact the 2010 JSFR design building by lessons learned from the Fukushima Daiichi Nuclear Power Plant (Fukushima I NPP) accident.

Journal Articles

Sensitivity study on forest fire breakout and propagation conditions for forest fire hazard curve evaluations

Okano, Yasushi; Yamano, Hidemasa

Mechanical Engineering Journal (Internet), 4(3), p.16-00517_1 - 16-00517_10, 2017/06

A sensitivity study on forest fire hazard curves was performed. The probability fluctuation on forest fire breakout time affects the reaction intensity and the fireline intensity around 4% and 14% respectively. The probability fluctuation on forest fire breakout points affects the hazard curve frequency around +70% to -40%. The probability fluctuation due to forest firefighting operation only affects the frequency of the hazard curves, but not the intensity. The hazard curves without the effect of firefighting remarkably increase around 40 to 80 times in frequency in comparison with those with considering the forest firefighting operation effect outside the plant. This study indicated that the most significant factor in the forest fire hazard risk is whether the forest firefighting operation outside the plant is expected before the forest fire arrival at the plant.

Journal Articles

Event sequence assessment of deep snow in sodium-cooled fast reactor based on continuous Markov Chain Monte Carlo method with plant dynamics analysis

Takata, Takashi; Azuma, Emiko*

Journal of Nuclear Science and Technology, 53(11), p.1749 - 1757, 2016/11

 Times Cited Count:1 Percentile:14.27(Nuclear Science & Technology)

Margin assessment of a nuclear power plant against external hazards is one of the most important issues after Fukushima Dai-ichi Nuclear Power Plant Accident. In this paper, a new approach has been developed to assess the plant status during external hazards and countermeasures against them in operation quantitatively and stochastically. A Continuous Markov chain Monte Carlo (CMMC) method is applied and coupled with a plant dynamics analysis. In the CMMC method, a subsequence plant status is determined by the latest state (Markov chain) and the status is evaluated from the plant dynamics analysis. A failure or success of safety function of plant component is also evaluated stochastically based on a latest state of plant or hazard. A numerical investigation of plant dynamics analysis against a snow hazard is also carried out in a loop type sodium cooled fast reactor so as to assess the margin against the hazard.

Journal Articles

Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

Nuclear Engineering and Design, 308, p.86 - 95, 2016/11

 Times Cited Count:4 Percentile:45.9(Nuclear Science & Technology)

This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10$$^{-6}$$/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1-2 m/day of snowfall speed and 0.5-0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution to secure the access routes.

Journal Articles

Hazard curve evaluation method development for a forest fire as an external hazard on nuclear power plants

Okano, Yasushi; Yamano, Hidemasa

Journal of Nuclear Science and Technology, 53(8), p.1224 - 1234, 2016/08

 Times Cited Count:3 Percentile:36.52(Nuclear Science & Technology)

A method to obtain a hazard curve of a forest fire was developed. The method has four steps: a logic tree formulation, a response surface evaluation, a Monte Carlo simulation, and an annual exceedance frequency calculation. The logic tree consists domains of forest fire breakout and spread conditions, weather conditions, vegetation conditions, and forest fire simulation conditions. The new method was applied to evaluate hazard curves of a reaction intensity and a fireline intensity for a typical location around a sodium-cooled fast reactor in Japan.

Journal Articles

Severe external hazard on hypothetical JSFR in 2010

Chikazawa, Yoshitaka; Kato, Atsushi; Hayafune, Hiroki; Shimakawa, Yoshio*; Kamishima, Yoshio*

Nuclear Technology, 192(2), p.111 - 124, 2015/11

 Times Cited Count:1 Percentile:12.03(Nuclear Science & Technology)

Evaluation of severe external hazards on JSFR has been analyzed. For seismic design, safety components are confirmed to maintain their functions even against recent strong earthquakes. For tsunam, hypothetical station blackout has been evaluated.

Journal Articles

Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors; Project overview and strong wind PRA methodology

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.454 - 465, 2015/05

This paper describes mainly strong wind PRA methodology development in addition to the project overview. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6$$times$$10$$^{-9}$$/year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system.

Journal Articles

Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors, 1; Project overview and margin assessment methodology against snow

Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi; Okano, Yasushi; Sakai, Takaaki; Yamamoto, Takahiro*; Ishizuka, Yoshihiro*; Geshi, Nobuo*; Furukawa, Ryuta*; Nanayama, Futoshi*; et al.

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 10 Pages, 2015/05

This paper describes mainly snow margin assessment methodology development in addition to the project overview. For the snow margin assessment, the index is a combination of a snowfall rate and duration. Since snow removal can be expected during the snowfall, the developed snow margin assessment methodology is such that the margin was regarded as the snowfall duration up to the decay heat removal failure which was defined as when the snow removal rate was smaller than the snowfall rate.

Journal Articles

Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors, 3; Numerical simulations of forest fire spread and smoke transport as an external hazard assessment methodology development

Okano, Yasushi; Yamano, Hidemasa

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 9 Pages, 2015/05

Numerical simulations of forest fire propagation and smoke transport were performed with sensibility studies to weather conditions, and the effect by the smoke on the air filter was quantitatively evaluated. Forest fire propagation simulations were performed using FARSITE code. A temporal increase of a forest fire spread area, a position of the frontal fireline, "reaction intensity" and "frontal fireline intensity" are obtained and used for the smoke transport simulations by ALOFT-FT where spatial distribution of PM2.5 and PM10 are evaluated. The total amount of particle matter at the air filter at the nuclear power plant is around several hundred grams per m$$^{2}$$ which is well below the operational limit of the air filter of 15 kg/m$$^{2}$$.

9 (Records 1-9 displayed on this page)
  • 1