Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 245

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

High-temperature oxidation failure in reactivity-initiated accidents; An Evaluation of failure criteria based on oxygen concentration from the previous NSRR experiments

Luu, V. N.; Taniguchi, Yoshinori; Udagawa, Yutaka; Katsuyama, Jinya

Nuclear Engineering and Design, 442, p.114222_1 - 114222_15, 2025/10

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Reaction behavior between sodium and molten salt caused by the heat transfer tube failure for sodium-cooled fast reactor coupled to thermal energy storage system

Sato, Rika; Kondo, Toshiki; Umeda, Ryota; Kikuchi, Shin; Yamano, Hidemasa

Progress in Nuclear Science and Technology (Internet), 8, p.137 - 142, 2025/09

In a sodium-cooled fast reactor (SFR) coupled to thermal energy storage (TES) system, the reaction between nitrate molten salt as thermal energy storage medium and sodium (Na) as reactor coolant might occur under postulated accidental conditions. Thus, the reaction behavior of Na-nitrate molten salt is one of the important phenomena in terms of safety assessment of the SFR with TES system. In this study, reaction experiments on Na-solar salt were performed. It was found that Na-solar salt reaction occurred after the NaNO$$_{3}$$-KNO$$_{3}$$ eutectic melting. Based on the measured reaction temperature, the kinetic parameters and rate constant were obtained and compared with the sodium-water reaction. From the results of kinetic analysis, it could be assumed that Na-solar salt reaction occurs in the time frame of the accident such as the failure of heat transfer tube of sodium-molten salt heat exchanger.

Journal Articles

Integrity evaluation of boundary function of main components in nuclear plants during severe accidents

Tsukimori, Kazuyuki; Yada, Hiroki

Journal of Pressure Vessel Technology, 147, p.031901_1 - 031901_9, 2025/00

 Times Cited Count:0 Percentile:0.00(Engineering, Mechanical)

After the accident at the Fukushima Daiichi Nuclear Power Plant, very strict safety measures were implemented for nuclear power plants in Japan. It thus becomes a crucial issue if the safety of a plant is maintained or not at beyond design basis events. In this study, head plates and bellows were examined as components that compose the parts of the boundary of vessels that contain the primary coolant of a prototype fast breeder reactor. The behaviors of buckling, post-buckling deformation, and penetration failure, that is, loss of boundary function of these components with increasing pressure were investigated. The series of this research program started in FY2013 and the research proceeded step by step. The new result in this paper is the application of the proposed criteria to head plates and bellows, and a conservative estimation of penetration failure of these components is obtained.

Journal Articles

Quantitative evaluation of irradiated ductility degradation using the indentation technique combined with numerical experiments

Wakui, Takashi; Saito, Shigeru; Futakawa, Masatoshi

Materials, 17(23), p.5925_1 - 5925_14, 2024/12

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

The ductile properties of irradiated materials are one of the important indicators related to their structural integrity. Indentation tests are used for evaluating the ductile properties easily and rapidly. Constants in the material constitutive equation were identified via inverse analysis using the Kalman filter, such that the numerical experimental results reproduced the indentation test results. Numerical tensile experiments were conducted using stress-strain curves with the identified constants to obtain nominal stress-strain curves. Furthermore, two methods were proposed for evaluating the total elongation. Evaluated minimum total elongation was 10 %. The evaluation results of ion-irradiated materials were similar to the tensile test results of irradiated materials.

Journal Articles

Development of failure mitigation technologies for improving resilience of nuclear structures

Kasahara, Naoto*; Yamano, Hidemasa; Nakamura, Izumi*; Demachi, Kazuyuki*; Sato, Takuya*; Ichimiya, Masakazu*

International Journal of Pressure Vessels and Piping, 211, p.105298_1 - 105298_6, 2024/10

 Times Cited Count:1 Percentile:29.18(Engineering, Multidisciplinary)

Journal Articles

Effectiveness evaluation of the measures for improving resilience at ultra-high temperatures

Onoda, Yuichi; Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

Proceedings of Probabilistic Safety Assessment and Management & Asian Symposium on Risk Assessment and Management (PSAM17 & ASRAM2024) (Internet), 10 Pages, 2024/10

We developed the measures for improving resilience of the sodium-cooled fast reactor structure using the failure mitigation technology and evaluated the effectiveness of the measures. To prevent core damage in the event of an accident progressing to an ultra-high temperature state, both measures to prevent overpressure in the reactor vessel and measures to cool the reactor core are required. As a core cooling measure, we developed a core cooling concept that promotes radiant heat transfer from the reactor vessel and cools the containment vessel outer surface by natural convection named Containment Vessel Auxiliary Cooling System (CVACS). We developed a method to use the reduction rate of core damage frequency as an indicator for effectiveness of the measures for improving resilience. The core damage frequency was evaluated by calculating the core cooling performance using CVACS, reflecting the results of structural analysis and human reliability analysis. By implementing measures for improving resilience in addition to existing measures, the core damage frequency of Japan loop-type sodium-cooled fast reactor caused by LOHRS has been reduced to about one-hundredth of the previous level.

Journal Articles

High-temperature rupture failure of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka

Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01

 Times Cited Count:1 Percentile:18.87(Nuclear Science & Technology)

Journal Articles

Evaluation of failure fraction for high burnup High Temperature Gas-cooled Reactor fuel

Sawa, Kazuhiro*; Haseda, Masaya*; Aihara, Jun

Nihon Kikai Gakkai Rombunshu (Internet), 89(921), p.22-00314_1 - 22-00314_6, 2023/05

In high temperature gas-cooled reactors (HTGRs), Tri-isotropic (TRISO)-coated fuel particles are employed as fuel. In the high burnup coated fuel particle, stress due to fission gas pressure and irradiation-induced pyrolytic carbon (PyC) shrinkage is introduced into the coating layers and consequently the stress could cause failure of coating layers under high burnup irradiation condition. A failure model has developed to predict failure fraction of TRISO-coated particle under high burnup irradiation. In the model, failure probability is strongly dependent on the irradiation characteristics of PyC. This paper describes the outline of the failure model and evaluation result of high burnup fuel irradiation experiment by the model.

Journal Articles

Evaluation of breach characteristics of fast reactor fuel pins during steady state irradiation

Oka, Hiroshi*; Kaito, Takeji; Ikusawa, Yoshihisa; Otsuka, Satoshi

Nuclear Engineering and Design, 370, p.110894_1 - 110894_8, 2020/12

 Times Cited Count:1 Percentile:8.04(Nuclear Science & Technology)

The objective of this study is to evaluate the reliability of a cumulative damage fraction (CDF) analysis for the prediction of fuel pin breach in fast rector using experimentally obtained fuel pin breach data for the first time. Six breached fuel pins were obtained from steady state irradiation in the EBR-II. Post irradiation examinations revealed that FP gas pressure was the main cause of creep damage in cladding, and that the stress contribution from FCMI was negligible. CDFs evaluated for these pins using in-reactor creep rupture equation, taking into account the irradiation history of cladding temperature and hoop stress due to FP gas pressure, were in the range of 0.7 to 1.4 at the occurrence of breach. This shows clearly that fuel pin breach occurs when the CDF approaches 1.0. The results indicate that CDF analysis would be a reliable method for the prediction of fuel pin breach when appropriate material strength and environmental effects are adopted.

Journal Articles

Transient response of LWR fuels (RIA)

Udagawa, Yutaka; Fuketa, Toyoshi*

Comprehensive Nuclear Materials, 2nd Edition, Vol.2, p.322 - 338, 2020/08

Journal Articles

Fracture-mechanics-based evaluation of failure limit on pre-cracked and hydrided Zircaloy-4 cladding tube under biaxial stress states

Li, F.; Mihara, Takeshi; Udagawa, Yutaka; Amaya, Masaki

Journal of Nuclear Science and Technology, 57(6), p.633 - 645, 2020/06

 Times Cited Count:3 Percentile:25.23(Nuclear Science & Technology)

Journal Articles

Advancement of elemental analytical model in LEAP-III code for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*

Mechanical Engineering Journal (Internet), 7(3), p.19-00548_1 - 19-00548_11, 2020/06

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.

Journal Articles

The Effect of base irradiation on failure behaviors of UO$$_{2}$$ and chromia-alumina additive fuels under simulated reactivity-initiated accidents; A Comparative analysis with FEMAXI-8

Udagawa, Yutaka; Mihara, Takeshi; Taniguchi, Yoshinori; Kakiuchi, Kazuo; Amaya, Masaki

Annals of Nuclear Energy, 139, p.107268_1 - 107268_9, 2020/05

AA2019-0372.pdf:0.81MB

 Times Cited Count:3 Percentile:25.23(Nuclear Science & Technology)

Journal Articles

Analytical study of SPERT-CDC test 859 using fuel performance codes FEMAXI-8 and RANNS

Taniguchi, Yoshinori; Udagawa, Yutaka; Amaya, Masaki

Annals of Nuclear Energy, 139, p.107188_1 - 107188_7, 2020/05

 Times Cited Count:1 Percentile:8.04(Nuclear Science & Technology)

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

Journal Articles

Thresholds for failure of high-burnup LWR fuels by pellet cladding mechanical interaction under reactivity-initiated accident conditions

Udagawa, Yutaka; Sugiyama, Tomoyuki; Amaya, Masaki

Journal of Nuclear Science and Technology, 56(12), p.1063 - 1072, 2019/12

 Times Cited Count:10 Percentile:64.83(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Behavior of high-burnup LWR-MOX fuel under a reactivity-initiated accident condition

Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09

Journal Articles

An Interpretation of Fukushima-Daiichi Unit 3 plant data covering the two-week accident-progression phase based on correction for pressure data

Sato, Ikken

Journal of Nuclear Science and Technology, 56(5), p.394 - 411, 2019/05

 Times Cited Count:13 Percentile:73.84(Nuclear Science & Technology)

Water columns were adopted in the pressure measurement system of Fukushima-Daiichi Unit-3. Part of these water columns evaporated during the accident condition jeopardizing correct understanding on actual pressure. Through comparison of RPV (Reactor Pressure Vessel) and S/C pressures with D/W pressure, such water-column effect was evaluated. Correction for this effect was developed enabling clarification of slight pressure difference among RPV, S/C and D/W. This information was then integrated with other available data such as, water level, CAMS and environmental dose rate, into an interpretation of accident focusing on RPV and PCV pressurization/depressurization and radioactive material release to environment. It is suggested that dryout of in-vessel and ex-vessel debris was likely causing pressure decrease. S/C water poured into pedestal heated by relocated debris was the likely cause of pressurization. Cyclic reflooding of pedestal debris and dryout was likely.

Journal Articles

Development of numerical analysis method for tube failure propagation under sodium-water reaction accident

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Advancement of numerical analysis method for tube failure propagation

Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Li, J.*; Jang, S.*

Proceedings of 2018 ANS Winter Meeting and Nuclear Technology Expo; Embedded Topical International Topical Meeting on Advances in Thermal Hydraulics (ATH 2018) (USB Flash Drive), p.1289 - 1294, 2018/11

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.

245 (Records 1-20 displayed on this page)